
© 2015 Schneider Electric (Australia)

PICED
Logic Engine
Programmer's

Guide

Software Version 4.13

Wednesday, 4 February 2015

PICED Logic Programmer's Guide

© 2015 Schneider Electric (Australia). All rights reserved

Clipsal is a registered trademark of Schneider Electric (Australia) Pty Ltd.
C-Bus is a registered trademark of Schneider Electric (Australia) Pty Ltd
PICED is a registered trademark of Schneider Electric (Australia) Pty Ltd
Home Management Series is a registered trademark of Schneider Electric (Australia) Pty
Ltd
Windows is a trademark of Microsoft Corporation
All other logos and trademarks are the property of their respective owners

Schneider Electric (Australia) reserves the right to change specifications or designs
described in this manual without notice and without obligation.

Trademarks

Copyright Notice

Disclaimer

Page 1

PICED Logic Programmer's Guide

© 2015 Schneider Electric (Australia)

Table of Contents

Section Page

1 ... 4Introduction

.. 51.1 Typographic Conventions

.. 51.2 Programs

.. 51.3 Operation

2 ... 8Quick Start Guide

.. 82.1 Conditional Logic

.. 132.2 Modules

.. 132.3 Creating a Logic Project

.. 202.4 For users with Programming Skills

3 ... 22Using the Logic Engine

.. 223.1 Logic Editor

.. 303.2 Compiling

.. 313.3 Running Logic

.. 313.4 Logic Engine Options

4 ... 34Logic Engine Language

.. 344.1 Program Structure

.. 354.2 Code Formatting

.. 354.3 Identifiers

.. 374.4 Comments

.. 384.5 Constants

.. 384.6 Variables

.. 394.7 Types

.. 424.8 Assignment

.. 424.9 Displaying Data

.. 454.10 Operators

.. 534.11 Standard Functions

.. 624.12 Tags

.. 634.13 Date Functions

.. 664.14 Time Functions

.. 714.15 C-Bus Functions

.. 994.16 Timer Functions

.. 1014.17 System IO Functions

.. 1324.18 Special Days

.. 1344.19 String Functions

.. 1434.20 Other Functions

.. 1504.21 C-Bus Unit Functions

.. 1534.22 Flow Control

.. 1684.23 Sub-Programs

.. 1764.24 Modules

.. 1834.25 Graphics

.. 1974.26 Serial IO

Page 2

PICED Logic Programmer's Guide

© 2015 Schneider Electric (Australia)

.. 2094.27 Internet

.. 2334.28 Page Properties

.. 2344.29 Component Properties

.. 2444.30 Profiles

.. 2454.31 Media Transport Control

.. 2504.32 Complex Data Types

.. 2614.33 Files

.. 2674.34 ZigBee Functions

5 ... 273Debugging Programs

.. 2735.1 Error Types

.. 2735.2 Debugging Support Features

.. 2745.3 Debugging Methods

6 ... 277Error Messages

.. 2776.1 Compilation Errors

.. 2876.2 Run Time Errors

.. 2906.3 Resolving Compilation Errors

7 ... 292FAQ

.. 2927.1 When to use logic

.. 2927.2 Using Counters

.. 2937.3 Program Execution

.. 2957.4 Random Event Times

.. 2977.5 Logic Engine Security

.. 2977.6 Handling Triggers

.. 2987.7 Logic Catch-up

.. 2987.8 Handling Sets of Loads

.. 2987.9 Controlling Modules from Components or Schedules

.. 2997.10 Running Modules Infrequently

.. 2997.11 Simplifying Logic Conditions

.. 3007.12 Efficient Code

.. 3017.13 Fixing Errors

.. 3017.14 Tracking a Group Address

.. 3027.15 Logic Templates

.. 3037.16 How Much Logic Is Possible

.. 3077.17 Function indices start from 0, not 1

.. 3077.18 Displaying logic data

8 ... 308Appendix

.. 3088.1 Hexadecimal Numbers

.. 3088.2 Binary Numbers

.. 3098.3 Character and String Formats

.. 3128.4 Ladder Logic

.. 3138.5 Flow Charts

.. 3148.6 Functional Blocks

.. 3148.7 Pascal

.. 3228.8 Tutorial Answers

Page 3

PICED Logic Programmer's Guide

© 2015 Schneider Electric (Australia)

Index 334

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 4

1 Introduction

The Logic Engine complements the other functions of the PICED software by allowing the user to
implement new or customised system behaviour.

The Logic Engine executes programs for the user to implement features like:
Scheduling (time and date based events)
Logic (conditional events)
Combinations of Scheduling and logic
Calculations

Functions which PICED can currently support (Scenes, Schedules, Irrigation, Special Days) will not
need to be performed within logic, but the logic can interact with them. It is much more efficient to
use the Scene Manager to implement Scenes than to try to implement them using logic.
The same applies to Schedules and Irrigation.

The Logic Engine uses the User Program to provide instructions for how it should behave. It makes
decisions based on the Logic Engine inputs and controls various outputs, as shown below :

Logic can be used for Colour C-Touch, PAC, and Black & White C-Touch Mark II projects, but not for
Black & White C-Touch Mark I projects.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 5

1.1 Typographic Conventions

Throughout this document, text representing lines of code is written in Courier font, and is generally
indented. For example :

SetLightingGroup("Porch Light", on);

Delay("0:10:00");

SetLightingGroup("Porch Light", off);

Where the section of the code is important, the section name will appear in braces { } before the
code. For example :

{ var declarations }

i : integer;

Where part of the code has been left out for clarity, an ellipsis (...) within braces { } is used. For
example :

{ var declarations }

i : integer;

{ ... }

i := 3;

When reference is made to a software button or menu item, the name (or text) is written in bold.
Menu and submenu items are separated by a vertical bar. For example, Edit | Undo would refer to
the "Undo" menu item in the "Edit" menu.

All topics are cross referenced. A cross reference looks like this.

Some topics are of a more advanced nature and are not relevant to most users. These will have the
icon shown below to show that you can skip the section unless you are requiring the more advanced
functions of the Logic Engine.

1.2 Programs

A program is a set of instructions which define how the Logic Engine is to operate.

Ideally, it would be nice to be able to give instructions in a human language (for example, English),
such as :

At 7:00PM, switch the kitchen lights on.

However, human languages are not sufficiently precise, and are often ambiguous. To guarantee that
the Logic Engine will perform exactly what is desired, it is necessary to use a "computer language".
The example above would be written in the Logic Engine language as :

once time = "7:00PM" then SetLightingLevel("Kitchen", ON);

which isn't quite as quite as simple, but is still very readable.

A user Program is often referred to as "code".

1.3 Operation

The Logic Engine has an Editor which allows the user to enter their programs. The Logic Engine

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 6

Language section describes the language used for the logic programs.

When the user program is executed, it is referred to as a "scan". The user program will be executed
(scanned) five times per second (i.e. every 200ms).

Certain actions can be performed when the Logic Engine first starts. These are put in the
Initialisation section. Other actions are executed every time something changes. These are put in
the Modules section.

The data flow of the Logic Engine is summarised by the flow chart below.

The steps in the operation of the Logic Engine are as follows :
1. Creation of the user Program, either by direct entry of the program text, or by means of the

Module Wizard
2. Compilation of the program
3. Running the logic in an Interpreter

The operation of the Logic Engine is shown in the flow chart below :

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 7

The first step in the process is to initialise all variables. The users Initialisation Code is then
executed. The Modules are then all executed in order. If there are no errors, then the Logic Engine
waits for 0.2 seconds and then it runs the Modules again. When an error occurs, the Logic Engine
stops (see Logic Engine Options).

See also Program Execution

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 8

2 Quick Start Guide

This Quick Start Guide introduces the concepts necessary to implement basic logic functions. If you
wish to learn all of the details of the Logic Engine, you may skip this section, and proceed with the
Logic Engine Language.

2.1 Conditional Logic

The most common structure used in user Programs is the IF or ONCE statement. It is used to
perform an action if certain conditions are true.

For example, if you want to switch on the porch light at 7:00 PM every night, the statement would be
:

if time = "7:00PM" then

 SetLightingState("Porch Light", ON);

The IF statement consists of five parts :
the word IF
the condition under which something is to be done
the word THEN
the action that is to be done when the condition is true (this is called the statement)
a semicolon (;)

So the general form (or syntax) of an IF statement is :

if condition then

 statement;

Condition

The condition is an expression which describes the circumstances under which the statement is to
be executed. The condition could be based on the time, date, C-Bus levels or many other things.

In the example above, the condition is :

time = "7:00PM"

This condition will be true when the current time is 7:00 PM. Hence at 7:00 PM every day, the
statement (switching on the Porch Light) will be executed.

Statement

The statement is an action or list of actions to be performed when the expression in the condition is
true. The statement can do things like setting a C-Bus Group Address to a level, setting a Scene or
selecting a PICED page.

In the example above, the statement is :

 SetLightingState("Porch Light", ON);

This sets the state of a Lighting Group Address called "Porch Light" to ON.

Examples

If the porch light was to only be switched on every Friday night, then the above example would have

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 9

its condition changed to :

if (time = "7:00PM") and (DayOfWeek = "Friday") then

 SetLightingState("Porch Light", ON);

In the above case, there are two parts of the condition, joined by an AND operator. Both of the parts
of the condition have to be true in order for the statement (switching on the Porch light) to be
executed.

If the porch light was to switched on every Friday night, but was also to switch off two hours later,
then the statement would be changed to :

if (time = "7:00PM") and (DayOfWeek = "Friday") then

begin

 SetLightingState("Porch Light", ON);

 Delay("2:00:00");

 SetLightingState("Porch Light", OFF);

end;

Now the statement consists of several statements within a BEGIN / END Block. In this case, there
is a statement to switch on the Porch light, then another to delay for two hours, then another to
switch off the Porch light.

Edge Triggered Conditions

If you had an outside light level sensor connected to C-Bus and you wanted to switch on the porch
light when the level drops below 50%, then you might write the (incorrect) code as :

if GetLightingLevel("Outside Sensor") < 50% then

 SetLightingState("Porch Light", ON);

The problem is that once it gets dark outside, the condition will be true for many hours. On each
program scan (each second), the Porch light will be switched on. This has two problems :

it creates a lot of unnecessary C-Bus messages
if you manually switch the porch light off, the logic will switch it straight back on again

In this case, we really only want the light switched on when the light level first goes below 50%. If
you want a statement to be only executed when something first becomes true, then it is necessary
to use the Once Statement. The above code should be written as :

once GetLightingLevel("Outside Sensor") < 50% then

 SetLightingState("Porch Light", ON);

In this case, when the light level drops below 50%, the porch light will be switched on. The porch
light will not be switched on again until the light level has gone above 50% (which makes the
condition false) and then drops below 50% again (which makes the condition true again).

The code examples above with if time = "7:00PM" will have the same problem and should also
use a once statement.

Notes

Basic Conditional Logic, like the examples above, can be put together using the Module Wizard
without having to know much about the logic Language.

2.1.1 Conditions

The condition in a Conditional Logic statement is an expression which describes the circumstances

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 10

under which the statement is to be executed. The most common conditions used in basic logic are
described below.

C-Bus

The levels of C-Bus Group Addresses can be used as part of a condition. Various C-Bus Functions
can be used to obtain the level or state of a Group Address. The most common of these are :

GetLightingLevel : this gets the level of a C-Bus Lighting Group Address (level 0% to
100%)

GetLightingState : this gets the state of a C-Bus Lighting Group Address (on or off)

Examples

For a condition checking whether the Kitchen Light is on :

if GetLightingState("Kitchen Light") then...

The name of the C-Bus Group Address Tag is in double quotes.

For a condition checking whether the Lounge Light is less than 10% :

if GetLightingLevel("Lounge Light") < 10% then...

Note that the symbol < means "less than".

Date

The present date can be used as part of a condition. The most common Date Functions are :

Date : this is the current date
DayOfWeek : this is the current day of the week (Sunday, Monday etc)

Examples

For a condition checking whether the date is the first of April 2004 :

if Date = "1 April 2004" then...

Note that the date can be expressed as a Date Tag with a date within double quotes.

For a condition checking whether the day is not a Sunday :

if DayOfWeek <> "Sunday" then...

Note that the symbol <> means "not equal to".

Time

The present time can be used as part of a condition. The most common Time Functions are :

Time : This is the current time
Sunrise : This is the sunrise time today
Sunset : This is the sunset time today

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 11

Examples

For a condition checking whether the time is 23:00 (11PM) :

if Time = "23:00" then...

Note that the time can be expressed as a Time Tag with a time within double quotes.

For a condition checking whether the time is after sunset :

if Time > sunset then...

Note that the symbol > means "greater than".

Complex Conditions

Where more complex conditions are required, conditions can be combined with AND and OR
operators. If you want to perform an action when all of a series of conditions are true, then use the
AND operator. If you want to perform an action when any of a series of conditions are true, then use
the OR operator.

Examples

For a condition checking whether the time before 6 AM and the day is not a weekend :

if (Time < "6:00") and (DayOfWeek <> "Saturday") and (DayOfWeek <> "Sunday")
then...

Note that brackets must be used to group each part of the condition together.

For a condition checking whether any of the kitchen lights are on :

if GetLightingState("Kitchen 1") or GetLightingState("Kitchen 2") or
GetLightingState("Kitchen 3") then...

See also
Relational Operators
Boolean Operators

2.1.2 Statements

The statement in a Conditional Logic statement is an action or list of actions to be performed when
the expression in the condition is true. The most common statements used in basic logic are
described below.

C-Bus

The levels of C-Bus Group Addresses can be set as part of a statement. Various C-Bus Procedures
can be used to set the level or state of a Group Address. The most common of these are :

SetLightingLevel : this sets the level of a C-Bus Lighting Group Address (level 0% to
100%)

SetLightingState : this sets the state of a C-Bus Lighting Group Address (on or off)

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 12

Examples

To Switch the Dining Light on :

SetLightingState("Dining Light", ON);

To ramp the passage light to 0% over 30 seconds :

SetLightingLevel("Passage Light", 0%, "30s");

Scenes

C-Bus Scenes can be controlled from Logic. The most common Scene Procedure is :

SetScene : this sets a C-Bus Scene

Example

To set a Scene called "All Off" :

SetScene("All Off");

Selecting Pages

The Page displayed by PICED can be set from Logic. The ShowPage procedure can be used for
this.

Example

To show the page called "Alarm" :

ShowPage("Alarm");

Delay

Sometimes it is necessary to wait before executing another statement. The Delay procedure is used
for this.

Example

To delay for 1 second :

Delay(1);

To delay for 1 hour and 30 minutes :

Delay("1:30:00");

Compound Statements

To combine several statements together, they can be put in a BEGIN / END Block. The statements

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 13

will be executed in the order that they appear. A compound statement can be used anywhere that a
statement can be used.

Example

To set the "All Off" scene, delay for 10 seconds, then switch on the "Arm" group when group "Leave
Home" is first set:

once GetLightingState("Leave Home") then

begin

 SetScene("All Off");

 Delay(10);

 SetLightingState("Arm", ON);

end;

2.2 Modules

Modules are used to group together related bits of functionality. Typically a Module contains some
Conditional Logic.

To create a new Module for your program, open the Logic Editor by clicking on the Logic button on
the tool bar. Open the Module Wizard by clicking on the Wizard button on the Logic Editor tool bar
to create a new Module. This is demonstrated in the following section.

2.3 Creating a Logic Project

This section takes you through the steps involved with creating a basic logic project.

When a PICED project is created, the steps to follow are as follows :
1. Determine the Requirements
2. Document the Requirements
3. Create the Project Structure
4. Create the Logic Modules
5. Test the Logic
6. Archive the Project

2.3.1 Determine the Requirements

Before any work can commence, it is necessary to determine the requirements of the end user. This
involves talking with the user, and suggesting possible solutions to their needs. At this stage, the
implementation is not important, it is the outcome which needs to be determined.

For this exercise, we will pretend that the user wants the passage light to dim slowly to 50% if it is
greater than that level at 10:00PM.

2.3.2 Document the Requirements

It is very important to document the requirements of a project for several reasons :
1. It ensures that the requirements will not be forgotten
2. It provides an agreed set of specifications which the user and the installer can agree on
3. It provides something which you can test against to ensure that the installation operates as

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 14

promised
4. It helps to clarify the requirements in your mind.

It is likely that if you can't document a requirement, you will not be able to fulfil that requirement.

There are many ways of documenting requirements. Each are suitable in certain circumstances.

Text

There is nothing wrong with describing the requirement in text as long as you do so precisely.
Unfortunately, human languages are often ambiguous and this can lead to confusion. This is why
some of the alternative methods are used.

For our example, the requirement written as text would be :

"At 10:00PM, if the Passage Light is at a level of more than 50%, dim it to 50% over 30 seconds".

Truth Tables

A "truth table" is a diagram showing the combinations of the various elements which make up the
requirement and the action which has to be taken.

For our example, the requirement represented as a truth table would be :

Time Passage Light Action

10:00 PM over 50% Dim Passage Light to 50% over 30 seconds

10:00 PM 50% or less do nothing

not 10:00 PM over 50% do nothing

not 10:00 PM 50% or less do nothing

Flow Charts

A Flow Chart can be used to represent a sequence of actions and decisions. Our example is not
particularly suitable for representation with a flow chart.

Ladder Logic Diagrams

Ladder Logic is used to represent the relationships between "inputs" (conditions) and
"outputs" (actions). Our example is not particularly suitable for representation with ladder logic.

Functional Block Diagrams

Functional Blocks can also be used to represent the relationships between "inputs" (conditions) and
"outputs" (actions). Our example can be represented with a functional block diagram as shown
below.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 15

2.3.3 Create the Project Structure

The next step is to create the PICED Project structure. For our exercise, follow these steps :
1. Start the PICED software.
2. Select Create a New Blank Project
3. Click on Next
4. Select Colour C-Touch
5. Click on Next
6. Select the "home" project in the C-Bus Project list
7. Click on Finish

We now want to create Pages and Components for use with our Project. Place a Slider on the page,
and set it to control the "Passage Light" group address. If this Group Address doesn't exist, click on
the add button (looks like a +) next to the Group Address list. Refer to the PICED main help file for
details on adding Components.

2.3.4 Create the Logic Modules

This step is where the logic is actually written.

Click on the logic button on the tool bar to open the Logic Editor.

Add a new module using the Logic Wizard by clicking on the Logic Wizard icon or by clicking on
Add New Module using Wizard.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 16

The Module Wizard will be displayed. Enter a meaningful name for the Module and a description of
what is does, as shown below. Select Conditional Action and Run Module Continuously. Click
on Next.

The Conditions page is now shown. For our example, we want the Passage Light to be dimmed
when the time is 10:00PM and if the level is greater than 50%.

The first part of our condition is that the time is 10:00PM. Select the controls in the order shown
below. Note that the condition can be "read" from left to right. When the Add button is clicked, the
condition is displayed in the text at the top. The condition is shown as

(Time = "10:00:00 PM")

which is the logic engine's way of saying "the time is 10:00 PM".

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 17

The next condition can be added by following the steps below.

The and button is selected because we want to dim the Passage Light when the time is 10:00PM
and the light is greater than 50%. The second condition is expressed in the logic engine language
as

(GetLightingLevel("Passage Light") > 50%)

Now that the conditions have been created, click on Next to show the Actions page. Select the
properties as shown below. When the Add button is clicked, the action will be shown at the top.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 18

The action is expressed in the logic engine language as :

(SetLightingLevel("Passage Light", 50%, "30s");

Click on the Finish button to finish the Logic Wizard.

The logic code entered has had a few things added to it, and it now appears in the logic editor as
shown below.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 19

Notice that the description that was entered has been turned into a Comment. The conditions and
actions have been turned into a Once Statement.

2.3.5 Test the Logic

To test the logic, the first step is to Compile the logic. To do this, click on the Compile button (looks
like a tick) on the Tool Bar. If the code is all correct, you should see a message "Compiled OK" in
the output window at the bottom of the Logic Editor.

To test the logic, we need to have it Running. Click on the run button (looks like a triangle) on the
Tool Bar. The logic code will change to a grey colour and the top of the Logic Editor will say "Logic
Engine - Running".

If you now close the Logic Editor, you will see an L next to an S at the bottom of the main form. The
L indicates that the logic is running.

If you change the level of the Passage Light slider, nothing should happen. To test that our
requirements have been implemented correctly, set the slider to 100%. Now change the computer
clock to 9:59PM. To change the computer time :
1. Double click on the clock on the right of the task bar
2. The Date and Time Properties form will be displayed as shown below.
3. Set the new time
4. Click on OK

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 20

When the time changes to 10:00 PM, you should see the Passage Light slider slowly move down to
50%.

For completeness in the testing, set the slider to around 20%. Change the time to 9:59PM again.
When the time changes to 10:00PM, the Passage Light level should not change.

When complete, change the computer time back to the correct setting.

If you have an error with the code, you will need to :
1. Debug the code
2. Compile the code again
3. Test it again
4. Repeat steps 1 to 3 until it works correctly.

2.3.6 Archive the Project

When you have completed the project, you should save the Project as an Archive and save the
archive to a backup disk and ideally provide a copy to the user for their records. If you ever have a
computer malfunction, this archive will enable you to recover your work without having to start again.

2.4 For users with Programming Skills

If you already have experience with computer programming, this section provides details of the
similarities and differences between the logic engine and other programming languages.

The Logic Engine is based on ANSI Pascal. If you are familiar with Pascal, there should be very little
"learning curve" in using the Logic Engine. The main aspects of the Logic Engine which make it
unique are summarised below.

Modules

A Module is a named unit of code. All Modules share common memory.

Modules can contain delays. While a Module is delayed, the other Modules are unaffected. In this
manner, it is a little like a multi-tasking environment.

Modules can also be enabled and disabled.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 21

Execution Scan

Every 200ms, all of the Modules are executed in the order in which they are listed. This is called a
"scan".

On the first scan only, the Initialisation code is executed.

Edge Triggered Condition Statements

The Once Statement is an edge-triggered conditional statement. When the condition first changes
from false to true, code can be executed.

Tags

Tags are text representations of integer values which make the code easier to read. They are not the
same as Constants, but perform a similar function.

See also Program Execution, Program Structure and Operation.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 22

3 Using the Logic Engine

The steps to using the Logic Engine are :
The Logic Engine Editor is used as a means of entering the user program.
The user program is then Compiled
Any program Errors are fixed
The program is Run.
If necessary, various Debugging methods can be applied to ensure that the program runs as
desired.

3.1 Logic Editor

The Logic Editor is shown below. It consists of several sections :
A Toolbar at the top, which provides access to common functions
A logic "tree" on the left which provides access to various parts of the code
A code window on the right where the user program is entered
An output window at the bottom, where results are displayed
A Resources Window at the bottom left showing the Resources used
A Status Bar at the bottom showing Hints

3.1.1 Menu Items

The Logic Editor menu items provide access to many of the Logic Engine functions. Most of those
functions are available elsewhere too.

File Menu

Save - saves the Project
Logic Report - generates a Logic Report

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 23

Close Form - close the Logic Editor

Edit Menu

Undo - undoes the last action in the Code Window
Copy - copies selected text in the Code Window
Cut - cuts selected text in the Code Window
Paste - pastes copied text in the Code Window
Find - finds some text in the Code Window
Find In All - finds some text in all nodes of the tree (starting with constants)
Find Next - finds the next occurrence of the text in the Code Window
Replace - replaces selected text in the Code Window
Go To Line Number - goes to the selected line number in the Program

Program Menu

Compile Logic - Compiles the logic
Run Once - Runs the Logic program once
Run Logic - Runs the Logic program continuously
Pause Logic - pauses the Logic program
Stop Logic - stops the Logic program

Help Menu

Help - provides access to the logic help file

There are also pop-up menus on the Logic Tree and the Code Window.

3.1.2 Tool Bar

The Toolbar at the top of the Logic Editor allows quick access to commonly used features of the
Logic Editor.

The features available via the toolbar are :
Clearing all code
Module Wizard
Adding Module Groups
Logic Engine Options
Logic Engine Report (listing of the user Program)
Displaying Graphics Commands List
Editing System IO variables
Compiling
Running Logic

3.1.3 Logic Tree

The Logic Tree on the left of the Logic Editor provides access to the various parts of the code.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 24

The two main parts of the Logic Tree are :
Advanced - this provides access to the advanced parts of the Logic Engine
Modules - this is where most of the user program is written

The Advanced section contains the following sections, which (with the exception of Initialisation)
correspond to sections of standard Pascal code :

Constants
Types
Variables
Procedures
Functions
Initialisation

Each of these sections of the program is created automatically when the program is Compiled, so it
is not necessary for you to type in the headers (const, var etc).

To create new code sections :
Constants : select the Constants node. Click on the Add button on the Tool Bar or pop-up menu.
Enter the Constant name and value. Click on OK.
Types : select the Types node. Type the new type definition in the Code Window
Variables : select the Variables node. Click on the Add button. Enter the Variable(s) name and
type. Click on OK.
Procedures : select the Procedures node. Click on the Add button. Enter the Procedure name.
Click on OK. Type the procedure body in the Code Window
Functions : select the Functions node. Click on the Add button. Enter the Function name. Click
on OK. Type the function body in the Code Window
Initialisation : select the Initialisation node. Type the initialisation code in the Code Window
Modules : select the Modules node. Click on the Add button. Enter the Module name. Click on
OK. New Modules can also be added with the Module Wizard by clicking on the Wizard button.
Module Groups : click on the New Module Group button on the Tool Bar. Enter the name and
click on OK.

If you right click on the Logic Tree, you will see a pop-up menu appear :

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 25

This allows you to perform functions like :
Adding new code sections (see above)
Inserting a new code section
Deleting a code section
Changing the order of the code sections (Move Up or Move Down)
Manually Enabling and Disabling Modules
Editing the Schedule controlling a Module (this menu item is only visible if a Schedule controls the
Module)

When the logic is running, the state of Modules can be seen by the icons :
 A green tick indicates that the Module is enabled
 A red cross indicates that the Module is disabled
 A blue timer indicates that the Module is waiting for a Delay Procedure or a WaitUntil

Procedure.

When the logic is not running, an icon with a + on it indicates that the module is controlled (enabled

or disabled) by a Component or a Schedule.

Rearranging tree nodes

The order of the Procedures, Functions, Modules and Module Groups can all be changed. There are
two ways of doing this :

select the node to be moved, the right click and select Move Up or Move Down
select the node to be moved, then hold the left mouse button down and drag the node to the
desired place on the tree

3.1.4 Code Window

The Code Window is the window on the right of the Logic Editor which is primarily used for editing
user programs (code). The Code Window has its own toolbar :

The toolbar in the Code Window allows :
Adding new code sections
Editing (cut, copy, paste, undo)
Searching

To enter code in a section of the program, click on the appropriate node in the Logic Tree, and enter
text in the Code Window.

There are essentially four ways of generating code :
The Module Wizard can also be used to automate the creation of code for Modules
The Statement Wizard can be used for creating sections of code for a Module
The pop-up menu can be used for automatically generating small sections of code (see below)

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 26

Code can be typed in directly

Pop-up Menu

If you right click on the code window, a pop-up menu will appear :

This provides access to most of the Logic Engine language elements. Many formes are included to
automate the generation of code.

You can also use the pop-up menu for editing to copy, cut and paste code, as well as undoing
changes. A search facility is included to find words within the code window.

 Note that the The Logic Program can not be Edited while the Logic Engine is running.

3.1.5 Output Window

The Output Window at the bottom on the Logic Editor is used to display :
Results of the Compilation
Error Messages
Data written from the user program

3.1.6 Module Wizard

New Modules can be added with the Module Wizard by following this process :
Click on the Wizard button on the tool bar
Enter the Wizard Details
Click on the Next button
Enter the Wizard Conditions
Click on the Next button
Enter the Wizard Actions

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 27

Click on the Finish button
If needed, make any additions / changes manually in the Code Window

3.1.6.1 Wizard Details

The Module details can be entered on the first page of the Module Wizard.

The following details for the Module can be entered :
Name : this should be a meaningful name describing the Module
Description : this should provide details of the purpose and operation of the Module
Module Task : this selects whether the Module is to be a conditional action (If or Once) or just a
series of actions
Run Module : this selects whether the Module should run continuously or only when triggered

If you select the Run Module When Triggered, then Disable option, a DisableModule statement
is added to the end of the Module to disable it when complete. A DisableModule statement is also
added to the Initialisation section so that the Module is disabled on start-up. To run the disabled
module, it is necessary to enable the Module. It will then run a single time and then disable itself
again. To automatically create a Schedule to enable the Module, select the Automatically Create
Enabling Schedule option. See also Controlling Modules from Components or Schedules.

Click on the Next button when complete.

3.1.6.2 Wizard Conditions

The Module Conditions can be set on the second page of the Module Wizard. The Conditions are the
circumstances under which the Actions are to be executed. The types of Conditions which can be
used include the following parameters :

C-Bus Level
Scene Level
Date
Time
System IO Variable value

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 28

Day of the Week
Special Day type

The following steps need to be taken to apply the condition(s) :
Select the type of condition (if / once)
Select the first condition (see below)
Click on the Add button
If there are more conditions, for each one :

Select the Logic Operator (AND, OR, NOT)
Select the condition (see below)
Click on the Add button

Note that changes to the conditions can be manually type in (for example, adding brackets)
When complete click on the Next button

To specify a Condition, select a Parameter from the list, select a Relational Operator and then
select a Value. Click on the Add button to add the Condition to the list.

Where multiple conditions are used, it is necessary to select a Boolean Operator from the Logic
group on the left.

3.1.6.3 Wizard Actions

The Module Actions can be set on the third page of the Module Wizard. An Action is something that
the Logic Engine can do under specified Conditions. The types of Actions which can be performed
include the following :

Set C-Bus Level
Set Scene
Select Page
Delay
Set System IO Variable value
Enable / Disable Module

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 29

To specify an Action, select an Action Type and details of the action from the Action group. Click
on the Add button to add the Action to the list.

When complete, click on the Finish button.

3.1.7 Statement Wizard

The Statement Wizard is very similar to the Module Wizard, except that it only creates sections of
code, and does not create a new Module. It can be used to create conditional statements (a
condition and some actions) or plain statements (actions).

To use the Statement Wizard, click on the Code Window where the code is to be inserted. Select
the Statement Wizard item from the pop-up menu (right click on the Code Window). Follow the
instruction for the Module Wizard, except that it is not necessary to enter a Module name (as one is
not being created).

3.1.8 Resource Window

The Logic Engine has finite resources, primarily memory. The Resources Window on the Logic
Editor show the following data :

Stack Size : the stack is where all Static (regular) variables are stored. The Stack size is how
much memory has been used.
Heap Size : the heap is where Dynamic Variables are stored. The Heap size is how much
memory has been used.
Spare : this is the amount of data memory spare
Program : this is the amount of program memory used
Int : this is how much of the Integer constants memory has been used
Real : this is how much of the Real constants memory has been used
String : this is how much of the String constants memory has been used
Instructions : this is the number of Interpreter instructions executed in the last scan
Scans : this is the number of scans run since the Logic Engine was started
Time : this is the time / average time taken by the Logic Engine scan(s). This should be less than
100ms for stable operation. For PAC and C-Touch Mark II projects, this shows a rough estimate of
the time and maximum time as a percentage of the unit capacity. This should not exceed 75% to
allow some margin for error. See How Much Logic Is Possible topic for more information.

The Resources Window can be hidden using the Logic Engine Options.

Note that the Resource Data are only updated when the Logic Engine is Run.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 30

3.1.9 Keyboard Shortcuts

There are various Logic Editor actions which can be performed using the keyboard which can be
much faster than using a mouse to select a menu item. These Keyboard Shortcuts are listed below :

Shortcut Action

TAB Insert a Tab (spaces)

CTRL + C Copy the selected text
CTRL + X Cut the selected text
CTRL + V Paste the selected text
Del Delete the selected text
CTRL + Del Delete to the end of the word
CTRL + Z Undo the last action

CTRL + F Find text
F3 Find next
CTRL + R Replace text

F1 Help

CTRL + I Indent the selected text by two spaces

CTRL + SHIFT + Select to end of next word
CTRL + SHIFT + Select to start of previous word
SHIFT + HOME Select to start of line
SHIFT + END Select to end of line
CTRL + SHIFT + HOME Select to start of page
CTRL + SHIFT + END Select to end of page

ALT + Move to end of next word
ALT + Move to start of previous word
ALT + HOME Move to start of page
ALT + END Move to end of page

INSERT Toggle between insert and overwrite

3.1.10 Logic Report

A report containing the details of the user Program can be generated by clicking on the Logic Report
button on the Tool Bar. A report will be generated containing :

A full listing of the user program
A list of which Group Addresses are used where
A list of which System IO variables are used where

3.2 Compiling

To compile a program, click on the Compile button on the Logic Editor toolbar.

Any Compilation Errors will appear in the window at the bottom. To find where in the code an error is,
just double click on the error message, and you will be taken to the correct place in the code.

Notes

Clicking on the Run or Run Once buttons will compile the code before proceeding.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 31

After compiling, you will not be able to compile again until the program has been changed.

3.3 Running Logic

The Logic can be Compiled, run, paused or stopped using the Tool Bar :

To run the Logic program, click on the Run Once or Run buttons on the Logic Editor tool bar.

The Run Once button will make the Logic Program run through one Scan, and then stop. This is
generally only used when Debugging Programs.

The Run button will make the Logic run continuously, and is the normal mode of operation.

To pause the Logic Engine (when it is running), either :
Click on the Run button again; or
Click on the Pause Button

To Stop the Logic Engine, click on the Stop button. When the Logic Engine has been stopped (as
opposed to paused), re-starting it will cause the Initialisation to be run again.

Notes :
Clicking on the Run or Run Once buttons will compile the code if it hasn't already been done.
If a Run Time Error occurs, the Logic will stop and an error message will appear in the window at
the bottom.
The Logic Program can not be Edited while the Logic Engine is running.

3.4 Logic Engine Options

To set the Logic Engine options, select the Options button on the Logic Editor Tool Bar. The Logic
Options form will appear, allowing you to select the following options. All options are restored when
PICED is re-started, with the exception of Allow use of all Functions for Testing which is always
off when the software starts.

Editor Options

Resource Usage

The Show Resource Usage check box selects whether the Logic Engine resources window is
shown or not.

Enable Range Checking

The Enable Range Checking check box selects whether the compilation inserts commands to
check the range of parameters. This is normally used when a program is first being written and
tested. Once it has been thoroughly tested, this option may be switched off, as it slows the Logic
Engine slightly.

Show Function Parameters

When the pop-up menu is used in the Code Window, code is automatically generated. If the Show
Function Parameters option is selected, details of the parameters are written to the code window to
save having to look up the details in the help file. For example, if the RoundRect function is selected

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 32

then the following code will be generated :
RoundRect(_left_, _top_, _right_, _bottom_, _radius_); { with Show Function
Parameters set }
RoundRect(, , , ,); { without Show Function Parameters set }

Use Short C-Bus Functions

When the C-Bus functions are selected with the logic Wizard or by using the right click menu in the
Code Window, if the selected network is the Default Network and the Application is Lighting, Trigger
Control or Enable Control, the short version of the functions can be used. For example, the following
two functions are the same :
SetCBusState("Local Network", "Lighting", "Kitchen", ON);
SetLightingState("Kitchen", ON);

The Use Short C-Bus Functions where Possible check box controls whether to automatically
generate code using the short C-Bus functions or the long ones.

Allow use of all Functions

There are occasions where it is desirable to be able to use logic functions which are not applicable
to the project type. This is generally only useful for testing purposes. For example, if you are testing
a PAC project in PICED, you may wish to use logging functions. To enable the use of all functions
temporarily, select the Allow use of all Functions for Testing check box. With this option
selected, you will receive compiler warning W006 instead of compiler error C179 if using an invalid
function.

WriteLn Output

The output of the WriteLn Procedure is normally written to just the Output Window. By selecting the
Send WriteLn output to Log option, the output of the WriteLn procedure is also written to the Log
as for the LogMessage Procedure.

Fonts Options

Syntax Highlighting

The Highlight Syntax option selects whether the different components of the code are highlighted in
different colours or not. To enable Syntax Highlighting, select the Show Syntax Highlighting
check box.

Fonts

The Code Window and Output Window can both have their font set. Click on the Edit buttons to
select a new font. A fixed width font, such as Courier New, generally works best.

Errors Options

Auto Re-start

The Auto Re-start Logic Following an Error check box selects whether the Logic Engine will
automatically start again following a run-time error.

Critical Errors

The Treat all Errors as Critical Errors selects whether the Logic Engine should continue operating
when a non-critical run-time error occurs.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 33

Warn of excessive PAC usage

For PAC projects, this controls whether you get warnings if the logic is too much for a PAC. You will
get a logged message if it exceeds 75% of the PAC capacity, and a Run Time Error if it exceeds
100%. You can see the current PAC usage in the Resource Window.

Maximum Instructions

The Maximum Instructions box allows the maximum number of instructions in one scan to be set
to prevent the Logic Engine from being caught in an infinite loop if there is an error in the user
Program. The Resource Window shows how many instructions were executed in the last scan. The
maximum number of instructions needs to be at least a bit bigger than the number of instructions
which are executed when things are operating correctly.

Maximum Consecutive C-Bus Scans

One of the most common Logical Errors is to have an If Statement instead of a Once Statement,
resulting in C-Bus commands being sent on every scan under certain conditions. By setting a value
in the Maximum Consecutive C-Bus Scans edit, an error will be raised when a C-Bus command
has been sent on every one of the selected number of consecutive scans.

Other Options

Wait for C-Bus

If you want the logic engine to wait until C-Bus has connected before starting the logic engine, select
the Wait until C-Bus is on-line to start logic check box. Note that in PICED this does not wait
until C-Gate has synchronised all C-Bus networks.

In Colour C-Touch, if the option is selected, it waits until the C-Bus "discovery" process is complete,
which generally takes less than one minute.

In other units, they always wait for the discovery process to be complete before starting logic (ie. the
option is ignored). For these units, the option is there for testing purposes in PICED.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 34

4 Logic Engine Language

The Logic Engine language is based on the Pascal language. Pascal was chosen because it is one
of the easiest languages to learn, and is one of the most straight forward to read for someone with
no experience with the language.

It is not necessary to learn the full language in order to do basic logic functions. To learn just enough
to perform basic logic, read these sections :

Program Structure
Identifiers
Constants
Variables
Types
Assignment
Operators
C-Bus Functions
If Then Statement
Once Statement
Modules
Using the Logic Engine

Most people will not need the following sections, except for very specialised circumstances :
Complex Data Types
Files
Socket (TCP/IP) IO

4.1 Program Structure

Note that the Logic Editor automatically builds the structure of the program for you, so it is not
necessary to remember the details of the program structure. The basic structure of a Pascal
program is:

 program ProgramName (FileList);

 const

 { Constant declarations }

 type

 { Type declarations }

 var

 { Variable declarations }

 { Procedure and Function definitions }

 begin

 { statements }
 end.

Note that the words in bold above are "reserved words", which have particular meanings in Pascal.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 35

The words in between the { and } braces are Comments, and are used to explain what the program
is doing or how it works.

4.2 Code Formatting

All spaces and end-of-lines are ignored by the Pascal compiler unless they are inside a string.
However, to make your program readable by human beings, you should indent your statements and
put separate statements on separate lines.

Since Pascal ignores end-of-lines and spaces, punctuation is needed to tell the compiler when a
statement ends. You MUST have a semicolon following:

each constant definition
each variable declaration
each type definition (to be discussed later)
almost all statements

The last statement in the program or Block, the one immediately preceding the END, does not
require a semicolon. However, it's recommended to add one, as it saves you from having to add a
semicolon if you have to move the statement higher up, or add another statement after it.

Indenting is not required. However, it is of great use for the programmer, since it helps to make the
program clearer. If you wanted to, you could have a program look like this:

if (GetLightingLevel("Porch") > 50%) and (time = "9:00PM") then begin
SetLightingLevel("Porch", 50, 8); Delay("1:00:00"); if (GetLightingLevel("Porch")
> 0%) then SetLightingLevel("Porch", 0%, 8); end;

But it's much better for it to look like this:

if (GetLightingLevel("Porch") > 50%) and (time = "9:00PM") then
begin
 SetLightingLevel("Porch", 50, 8);
 Delay("1:00:00");
 if (GetLightingLevel("Porch") > 0%) then
 SetLightingLevel("Porch", 0%, 8);
end;

In general, indent two spaces for each block. Skip a line between blocks of code. Most importantly,
use comments liberally. If you ever return to a program that you wrote a year ago, you probably
wouldn't remember the logic unless you documented it.

A block of code can be indented by selecting the code then using the CTRL + I Keyboard Shortcut.

4.3 Identifiers

Identifiers are names that allow you to reference stored values, such as variables and constants.

Rules for identifiers:
Must begin with a letter from the English alphabet.
Can be followed by alphanumeric characters (alphabetic characters and numerals) and the
underscore (_).
May not contain any special characters including ~ ! @ # $ % ̂& * () + ` - = { } [] : " ; ' < > ? , . /
| \

Many identifiers are reserved in Pascal - you cannot use them as your own identifiers. These
"keywords" are:

and

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 36

array
begin
case
const
div
do
downto
else
end
file
for
forward
function
goto (not implemented in the logic engine)
if
in
label (not implemented in the logic engine)
mod
nil (not implemented in the logic engine)
not
of
or
packed (not implemented in the logic engine)
procedure
program
record
repeat
set
then
to
type
until
var
while
with

Also, Pascal has many pre-defined identifiers. You can replace them with your own definitions, but
this would be unwise as you would change part of the functionality of Pascal :

abs
arctan
boolean
char
cos
dispose
eof
eoln
exp
false
input (not implemented in the logic engine)
integer
new
odd
ord
output (not implemented in the logic engine)
pack (not implemented in the logic engine)
pred
read

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 37

readln
real
reset
rewrite
round
sin
sqr
sqrt
succ
text (not implemented in the logic engine)
true
trunc
write
writeln

Pascal is not case sensitive. "MyProgram", "MYPROGRAM", and "mYpRoGrAm" are equivalent.
But for readability purposes, it is a good idea to use meaningful capitalization.

Note that identifiers are not the same as Tags.

4.4 Comments

Pascal comments either :
start with a (* and end with a *) or
start with a { and end with a }
have // at the start of the comment and continue to the end of the line

You can nest the { } comments within the (* *) comments or vice versa :
(* comment { nested comment } comment *)

{ comment (* nested comment *) comment }

You can also nest the // comments within the { } or (* *) comments and vice versa, but note that
everything after // on a line is ignored, including } and *).

You can't nest the same type of comments :

{ comment { this won't work } comment }

Commenting has two purposes: first, it makes your code easier to understand. If you write your code
without comments, you may come back to it a year later and have a lot of difficulty figuring out what
you've done or why you did it that way. Another use of commenting is to figure out errors in your
program. When you don't know what is causing an error in your code, you can comment out any
suspect code segments. It is recommended using brace comments { } in general, leaving the (* *)
comments for debugging (which will also comment out any other comments in the code).

Examples

(* this

 is a

 multi-line

 comment *)

{ this

 is also a

 multi-line

 comment }

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 38

{ this is a single line comment }

// this is also a single line comment

SetEnableLevel(32 {this is a comment in the middle of some code}, 255);

SetEnableLevel(32, 255); // this is a comment at the end of some code

4.5 Constants

Constants are referenced by identifiers, and can be assigned a fixed value at the beginning of the
program. The value stored in a constant cannot be changed.
Constants are defined in the constant section of a Program.

The format of a constant definition is :

Identifier = value;

Examples:
KitchenLightAddress = 32;

pi = 3.1416;

LetterA = 'a';

Constants are useful when you want to use a number in your programs that you may wish to change
in the future. If you are writing a program which controls the Kitchen Light (where the Kitchen Light
Group Address is defined as above), then you can change the address of the Kitchen Light at any
stage in the future by just changing the constant definition. That way, the rest of your code can
remain unchanged because it refers to the constant.

See also Integer, Real, Boolean, Char and String constant formats.

4.6 Variables

Variables store a value and their values can be changed as the program runs. Global variables (used
by Modules) must be declared in the Global Variables section of the code before they can be used.
The format is :

IdentifierList : Type;

IdentifierList is a series of Identifiers, separated by commas (,). All identifiers in the list are declared
as being of the same data type.

For example :

Temperature, SetPoint : Real;

CounterValue : integer;

IrrigationRunning : boolean;

Name : string;

The above example will create :
two Real variables - one called Temperature and the other called SetPoint
an Integer variable called CounterValue
a Boolean variable called IrrigationRunning
a String variable called Name

It is recommended that variables be initialised before they are first used. This can be done in the
Initialisation section.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 39

See also Using Counters.

4.7 Types

The basic data types in Pascal are:
 integer
 real
 char
 boolean

The Logic Engine also supports the string type.

The user can also create Complex Data Types.

4.7.1 Integer Type

The Integer data type can contain integers (whole numbers) from -2147483648 to +2147483647.

In the Logic Engine, dates and times are expressed as integers.

Integer Constants

An integer constant is written as a number with an optional minus sign at the front.

In many cases, Tags can be used as integer constants.

Integer constant values can also use the Hexadecimal notation or be expressed as a percent, as
described below.

The largest value which can be entered as a constant is 2147483599 or $7FFFFFFF.

Hexadecimal Constants

Hexadecimal numbers can be represented by placing a dollar ($) sign in front of a number. For
example :

Hexadecimal Constant Value

$00 0

$FF 255

$0B00 2816

$FFFFFF 16777215

The range is from $0 to $FFFFFF.

Percentage Constants

C-Bus Levels (from 0 to 255) can also be expressed as a percent (0 to 100). To express a level as a
percent, place a percent sign (%) after the number. For example :

Percent Constant Value

0% 0

50% 127

100% 255

Note that there are conversion functions to convert between C-Bus Levels and Percent :

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 40

LevelToPercent Function
PercentToLevel Function

4.7.2 Real Type

The real data type has a range from 1.5 x 10-45 to 3.4 x 1038.

Real Constants

Real values can be written in either fixed-point notation or in scientific notation, with the character E
separating the mantissa from the exponent. Hence :

452.13 is the same as 4.5213e2
0.001 is the same as 1E-3

4.7.3 Boolean Type

The Boolean data type can have only two values - true and false. Boolean variables are often called
"flags".

Boolean Constants

The only valid Pascal Boolean constant values are TRUE and FALSE. The Logic Engine also allows
the use of ON and OFF respectively.

4.7.4 Char Type

The char data type stores a single character.

Char Constants

The character is enclosed in single quotes, or apostrophes, such as :
'a' 'B' '+'

This data type can hold any ASCII or Unicode characters, including characters which can not be
printed, such as Carriage Return (ASCII number 13). These are written with a hash (#) followed by
the ASCII value in decimal or hexadecimal.

To use the quote character, two quotes are written together within the outer quotes (as for Strings).
This results in four quotes in a row (as shown below).

Examples

Character Constant Format

A 'A'

% '%'

Line Feed #10 or #$0A

Carriage Return #13 or #$0D

' (quote) ''''

space ' '

4.7.5 String Type

A string represents a sequence of characters. The reserved word string defines a default, 50
character string. For example,

var

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 41

 S: string;

creates a variable S that holds a string.

You can index a string variable just as you would an Array. If S is a string variable and i an integer

expression, S[i] represents the ith character in S. Be careful indexing strings in this way, since
overwriting the end of a string can cause errors.

You can assign the value of a string constant, or any other expression that returns a string, to a
string variable. The length of the string changes dynamically when the assignment is made.
Examples:

MyString := s;
MyString := 'Hello world!';
MyString := ' '; { space }
MyString := ''; { empty string }

A string is actually a zero based Array of characters. The standard declaration of a string (as above)
is equivalent to :

var

 S: array[0..50] of char;

The first character of the string (s[0]) stores the length of the string. To define strings of other
lengths, define a zero based array of the appropriate length. For example, for a string of 20
characters :

var

 S: array[0..20] of char;

String Constants

A character string, also called a string literal or string constant, consists of a quoted string, a control
string, or a combination of quoted and control strings. Separators can occur only within quoted
strings.

A quoted string is a sequence of up to 255 characters from the ASCII or Unicode character set,
written on one line and enclosed by apostrophes. A quoted string with nothing between the
apostrophes is a null string. Two sequential apostrophes in a quoted string denote a single
character, namely an apostrophe (as shown in the examples below).

A control string is a sequence of one or more control characters, each of which consists of the #
symbol followed by an unsigned integer constant from 0 to 255 and denotes the corresponding ASCII
character. The control string

#89#111#117

is equivalent to the quoted string

'You'

You can combine quoted strings with control strings to form larger character strings. For example,
you could use

'Line 1'#13#10'Line 2'

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 42

to put a carriage-return–line-feed between "Line 1" and "Line 2". However, you cannot concatenate
two quoted strings in this way, since a pair of sequential apostrophes is interpreted as a single
character. (To concatenate quoted strings, use the Append function, or simply combine them into a
single quoted string.)

Examples

string interpretation
'hello' { hello }

'You''ll see' { You'll see }
'''' { ' }
'' { null string }
' ' { a space }

#89#111#117 { You }
'hell'#111 { hello }

4.8 Assignment

Once you have declared a variable, you can store values in it. This is called assignment.

To assign a value to a variable, the syntax is:
variable_name := expression;

The expression can either be a single value, such as :
SetPoint := 38.5;

or it can be a complex expression containing Operators, such as :
SetPoint := 73.5 * 37 + 35.8 / 67.1;

Each variable can only be assigned a value that is of the same data type. Thus, you cannot assign a
real value to an integer variable. However, certain data types are compatible with others. In these
cases, you can assign a value of a lower data type to a variable of a higher data type. This is most
often done when assigning integer values to real variables. Suppose you had this variable declaration
section:

var

 some_int : integer;

 some_real : real;

When the following block of statements executes,
some_int := 375;

some_real := some_int;

some_real will have a value of 375.0.

4.9 Displaying Data

For writing data to the Logic Engine Output Window, there are two statements which can be used:

Write(Argument_List);

WriteLn(Argument_List);

These statements write the values of the parameters in the argument list to the screen. The WriteLn
(Write Line) statement skips to the next line when done.

Example

For example, to write the text 'Counter =' followed by the value of the variable called MyCounter :

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 43

WriteLn('Counter = ', MyCounter);

If the value of MyCounter was 123, then the Output Window would have the following line written to it
:

Counter = 123

Formatting the Output

Formatting the output is quite easy. For each identifier or literal value on the argument list, use:

Value : field_width

The output is right-justified in a field of the specified integer width. If the width is not long enough for
the data, the width specification will be ignored and the data will be displayed in its entirety (except
for real values - see below).

Suppose we had:

write('Hi':10, 5:4, 5673:2);

The output (with a dash simulating the space) would be:

--------Hi---55673

For real values, you can use the aforementioned syntax to display scientific notation in a specified
field width, or you can convert to fixed notation using the format :

Value : field_width : decimal_field_width

The field width is the total field width, including the decimal part. The whole number part is always
displayed fully, so if you have not allocated enough space, it will be displayed anyway. However, if
the number of decimal digits exceeds the specified decimal field width, the output will be rounded to
the specified number of places (though the variable itself is not changed). So :

write(573549.56792:20:2);

would look like:

-----------573549.57

Pascal also supports the Read and ReadLn functions for the purpose of reading data from the
keyboard. This is not supported by the Logic Engine, since it is not relevant.

4.9.1 Tutorial 1

In the tutorial questions, the sections that the code segments belong in are shown in comments. For
example, a snippet of code starting with { var } belongs in the variable declaration section of a
program. Where irrelevant bits of code have been skipped, the "..." symbol is used.

Question 1

Which of the following are valid Identifiers ?

name
case

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 44

light level
light_level
group#

Question 2

Write a statement to display the text 'Level = ', followed by the value of the variable Level.

Question 3

What are the numerical values of the following constants :

1.2E3
$12
100%

Question 4

Which of the basic Types are the following constants :

123.45
100
true
'a'
'hello'

Question 5

Write Variable Declarations for the following :

An integer called "total".
A string called "message".
A variable to hold currency called "cost".
A variable to store whether an error has occurred, called "error".

Question 6

Find the 6 errors in the code below.

{ var }
number1, number 2; integer;
...
{ main program }
number1 = 12;
number2 := 2.3
WriteLn('number2 =, number2);

Question 7

A real variable called Level contains the level of a light bulb (from 0 to 255). The light bulb is 100W.
Write a statement to display the power level of the light, with one decimal place.

Question 8

Write a statement to add 1 to the value of a variable called Count.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 45

Tutorial Answers

4.10 Operators

Operators are used for performing mathematical operations (such as addition or multiplication) or
comparisons (for example to check if two numbers are equal or not).

When combining operators, it is important to understand Operator Precedence.

An operator performs an operation on two or more operands. The type of operand depends on the
operator type.

4.10.1 Arithmetic Operators

The arithmetic operators in Pascal are:

Operator Operation Operands Result

+ Addition or unary positive real or integer real or integer

- Subtraction or unary negative real or integer real or integer

* Multiplication real or integer real or integer

/ Real division real or integer real

div Integer division integer integer

mod Modulus (remainder division) integer integer

The div and mod operators only work on integers.

The / works on both reals and integers but will always yield a real answer.

The other operations work on both reals and integers.

For operators that accept both reals and integers, the resulting data type will be integer only if all the
operands are integer. It will be real if any of the operands are real. Therefore,

3857 + 68348 * 38 div 56834 will be integer, but

38573 div 34739 mod 372 + 35730 - 38834 + 1.1 will be real because 1.1 is a real
value.

In Pascal, the minus sign can be used to make a value negative. For example :

some_real := -15;

will result in the some_real variable having a value of minus 15.

Do not attempt to use two operators adjacent to each other, such as :

some_real := 37.5 * -2;

This may make perfect sense to you, since you're trying to multiply by negative 2. However, Pascal
will be confused -- it won't know whether to multiply or subtract. You can avoid this by using
parentheses:

some_real := 37.5 * (-2);

to make it clearer.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 46

Note : Bitwise Operators can also be applied to Integers.

Example

To do something every 5 seconds:

once RunTime mod 5 = 0 then
begin
 ...
end;

4.10.2 Relational Operators

Relational operators are used to compare two values. The syntax of a Boolean expression is :

value1 RelationalOperator value2

The result of a boolean expression is a boolean value (TRUE or FALSE).

The following relational operators are used:

Operator Meaning

< less than

> greater than

= equal to

<= less than or equal to

>= greater than or equal to

<> not equal to

There are also other boolean operators which are used for Sets.

You can assign Boolean expressions to Boolean variables:

SomeBool := 3 < 5;

In this case, the value of SomeBool becomes TRUE.

Examples

To perform an action if x is greater than 5 :

if x > 5 then ...

Whenever possible, don't compare two real values with the equals sign. Small round-off errors may
cause two equivalent expressions to differ. If you want to determine whether two variables x1 and x2
are within 0.001 of each other, use :

if abs(x1 - x2) < 0.001 then ...

4.10.3 Char and String Operators

When Character variables are compared against each other (using Relational Operators), they are
converted to the ASCII value of the character before the comparison is made. So the expression :

'A' < 'B'

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 47

is TRUE.

Strings can also be compared. When two strings are compared, they are compared character by
character until either :

the characters do not match
the end of one or both strings is reached

Examples

The following expressions are all TRUE :

'abcd' < 'abcx'

'abc' < 'abcd'

'abc' <> 'ABC'

'abc' = #97#98#99 (see String Constants)

4.10.4 Boolean Operators

Complex Boolean expressions are formed by using the Boolean operators:

Operator Meaning

not negation / inverse

and conjunction

or disjunction

xor exclusive-OR

NOT Operator

The NOT operator is a unary operator - it is applied to only one value and inverts it. So for example,
with a boolean expression "A", the value of "not A" can be found from :

A not A

true false

false true

AND Operator

The AND operator yields TRUE only if both expressions are TRUE. So for example, with boolean
expressions "A" and "B", the value of "A and B" can be found from :

A B A and B

false false false

false true false

true false false

true true true

Where a series of operands are used with AND, the result is true if all of the operands are true.

OR Operator

The OR operator yields TRUE if either expression is TRUE, or if both are. So for example, with
boolean expressions "A" and "B", the value of "A or B" can be found from :

A B A or B
false false false

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 48

false true true
true false true
true true true

Where a series of operands are used with OR, the result is true if any of the operands are true.

XOR Operator

The XOR operator yields TRUE if one expression is TRUE and the other is FALSE. So for example,
with boolean expressions "A" and "B", the value of "A or B" can be found from :

A B A xor B

false false false

false true true

true false true

true true false

Examples

If you want to do something when both group 1 and group 2 are both on, the code would be:

if (GetLightingState(1) = ON) and (GetLightingState(2) = ON)
then...

If you want to do something when both group 1 and group 2 are both off, the code would be:

if (GetLightingState(1) = OFF) and (GetLightingState(2) = OFF)
then...

If you want to do something when either group 1 or group 2 is on, the code would be:

if (GetLightingState(1) = ON) or (GetLightingState(2) = ON)
then...

If you want to do something when either group 1 is on or group 2 is on, but not both, the code would
be:

if (GetLightingState(1) = ON) xor (GetLightingState(2) = ON)
then...

If you want to do something except when both group 1 and group 2 are both on, the code would be:

if not ((GetLightingState(1) = ON) and (GetLightingState(2) = ON))
then...

Note that if you apply DeMorgan's Rule, the above is equivalent to:

if (GetLightingState(1) = OFF) or (GetLightingState(2) = OFF)
then...

See also Operator Precedence and Simplifying Logic Conditions

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 49

4.10.5 Bitwise Operators

The bitwise arithmetic operators in Pascal are:

Operator Operation Operands Result

shl Bitwise Shift Left integer integer

shr Bitwise Shift Right integer integer

or Bitwise logical OR integer integer

and Bitwise logical AND integer integer

xor Bitwise logical XOR integer integer

not Bitwise logical NOT integer integer

The "bitwise" operators operate on the individual bits (binary digits) of an integer. To understand the
usage of these operators, it is necessary to understand binary numbers. The examples below all
show values in binary to clarify what is happening.

Shift Left Operator

Syntax

Value shl NumberOfBits

The Shift Left operation moves all of the bits in the Value left by a specified NumberOfBits. The result
is equal to multiplying Value by 2NumberOfBits.

Example

A 00000011
A shl 2 00001100

Shift Right Operator

Syntax

Value shr NumberOfBits

The Shift Right operation moves all of the bits in the Value right by a specified NumberOfBits. The
result is equal to dividing Value by 2NumberOfBits.

Example

A 00010000
A shr 2 00000100

OR Operator

Syntax

A or B

The logical OR operation when applied to integers A and B results in a value where each bit is the

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 50

logical OR of the corresponding bits in A and B.

Example

A 00110000
B 00000011
A OR B 00110011

AND Operator

Syntax

A and B

The logical AND operation when applied to integers A and B results in a value where each bit is the
logical AND of the corresponding bits in A and B.

Example

A 00111111
B 00000011
A AND B 00000011

XOR Operator

Syntax

A xor B

The logical XOR operation when applied to integers A and B results in a value where each bit is the
logical XOR of the corresponding bits in A and B.

Example

A 00111100
B 00001111
A XOR B 00110011

NOT Operator

Syntax

not A

The logical NOT operation when applied to an integer A results in a value where each bit is the
logical inverse (NOT) of the corresponding bits in A.

Example

A 00110000
NOT A 11001111

4.10.6 Operator Precedence

The Logic Engine follows an order of operations the same as used for algebra. The computer looks
at each expression according to these rules, in this order :

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 51

Evaluate all expressions in parentheses, starting from the innermost set of parentheses and
proceeding to the outermost.
Evaluate all multiplication and division from left to right.
Evaluate all addition and subtraction from left to right.

For example, the expression :

some_int := 1 + 2 * 3;

is interpreted as :

some_int := 1 + (2 * 3);

and will result in some_int being 7. The expression :

some_int := (1 + 2) * 3;

will result in some_int being 9.

The priority given to the various operators, from highest to lowest, are:

Priority Operators

Highest Priority NOT, Negation

High Priority *, /, DIV, MOD, AND, SHL, SHR

Low Priority +, -, OR, XOR

Lowest Priority =, <>, <, <=, >, >=, IN

Important Note

When combining two Boolean expressions using relational and Boolean operators, be careful to use
parentheses. For example:

(x > 5) or (y < 1)

This is because the Boolean operators are higher on the order of operations than the relational
operators. The expression :

x > 5 or y < 1

would be evaluated as

x > (5 or y) < 1

which makes no sense.

Example 1

To perform an action if the variables x and y are both greater than 0 :
if (x > 0) and (y > 0) then ...

To perform an action if either of the variables x and y are greater than 0 :
if (x > 0) or (y > 0) then ...

Example 2

If you want something to happen at 9PM if either group 1 or group 2 is on, the code would be :

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 52

once ((GetLightingState(1) = ON) or (GetLightingState(2) = ON))
and (Time = "9:00PM") then...

If you wrote it as :

once (GetLightingState(1) = ON) or (GetLightingState(2) = ON) and
(Time = "9:00PM") then...

then the action would occur under either of the following conditions:
Group 1 is on
Group 2 is on AND the time is 9PM

which is not what was required.

This is because the order of evaluation is:
Contents of brackets first
"and" is evaluated next
"or" is evaluated last

4.10.7 Tutorial 2

Question 1

Given that
 A := 1; B := 2; C := 4;

What does X equal after each of the following statements,
 X := A / B / C;
 X := A + B / C;
 X := A * B * C;
 X := A * B - C;
 X := A + B + C;
 X := A / B * C;
 X := A * B / C;
 X := A + B - C;

Question 2

Write statements in Pascal which correctly express each of the following mathematical
expressions.

Z = X + Y²

Z = (X + Y)²

 A + B + E
Z = ---------------
 D + E

 B
Z = A + -----
 C

 A + B
 Z = ---------
 C

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 53

 B
Z = A + -------
 D - C

Question 3

Which of the following statements is wrong and why ?

Y := 2X + A;
4 := X - Y;
A := 1 / (X + (Y - 2);
-J := K + 1;
S := T / * 3;
Z + 1 := A;

Question 4

If the following integer variables are assigned :

a := 1;

b := 2;

c := 3;

d := 3;

What are the boolean values of the following expressions ?

1 a > b
2 a = c
3 b <> c
4 c = d
5 not (a < d)
6 (a = b) or (c = d)
7 (a = b) and (c = d)
8 (a < 10) and not (c < d)
9 (a > 0) or (b > 0) and (c = 0)

Tutorial Answers

4.11 Standard Functions

The Pascal language provides a range of functions to perform data transformation and calculations.
The following sections provides an explanation of the standard functions.

The Logic Engine adds a lot of other functions which are useful for automation and control. These are
described in subsequent sections.

4.11.1 Mathematical Functions

The following mathematical functions are included with the Logic Engine :
Abs Function
Exp Function
Ln Function
Odd Function
Random Function
Round Function
Sqr Function

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 54

Sqrt Function
Trunc Function

4.11.1.1 Abs Function

The ABSolute function returns the absolute value of either an integer or real variable

Syntax

abs(x)

Description

The absolute function makes a negative number positive, but does not affect positive values.

The result of the function will be of the same type as the argument. Hence the Abs value of an
integer will be an integer, and the Abs value of a real expression will be a real value.

Example

Abs(-21) returns 21
Abs(-3.5) returns 3.5

To assign the absolute value of variable x to a variable n :
n := abs(x);

4.11.1.2 Exp Function

The exponential function calculates e (the base of natural logarithms) raised to the power of the
argument.

Syntax

exp(x)

Where the argument (x) is a real expression and the result is real.

Example

Exp(10) returns e to the power of 10

To assign the value of ex to a variable n :
n := exp(x);

There is no function in Pascal to calculate expressions such as ax. These are calculated by using
the formula

ax = exp(x * ln(a))

To assign the value of ax to a variable n :
n := exp(x * ln(a));

See also Power Function

4.11.1.3 Ln Function

The logarithm function calculates the natural log of a number greater than zero.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 55

Syntax

ln(x)

Where the argument (x) is a real expression and the result is real.

Example

To assign the logarithm of a variable x to a variable n :
n := ln(x);

4.11.1.4 Odd Function

The Odd function determines when a specified number is odd.

Syntax

odd(x)

Where the argument (x) is an integer expression and the result is Boolean.

Description

The Odd function returns a result of true when the argument is odd (ie. 1, 3, 5, 7, 9, ...) and false
when it is not (ie. it is even).

Example

To perform an action if a variable n is odd :
if odd(n) then ...

To perform an action if a variable n is even :
if not odd(n) then ...

4.11.1.5 Random Function

The Random function generates a random number.

Syntax

random(x)

Where the argument (x) is an integer expression and the result is an integer.

Description

The Random function generates a pseudo-random number between 0 and the value of the argument
(including 0, but not including the value of the argument).

Example

To assign a random number between 0 and 99 to a variable n :
n := random(100);

To assign a random number between 1 and 100 to a variable n :
n := random(100) + 1;

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 56

See also Random Event Times.

4.11.1.6 Round Function

This function returns the whole part (ie no decimal places) of a real number.

Syntax

round(x)

Where the argument (x) is a real expression and the result is integer.

Description

The round function rounds its argument to the nearest integer. If the argument is positive :
rounding is up for fractions greater than or equal to .5
rounding is down for fractions less than .5

If the number is negative :
rounding is down (away from zero) for fractions greater than or equal to .5
rounding is up (towards zero) for fractions less than .5

Example

round(4.87) returns 5
round(-3.4) returns -3

To assign the rounded value of variable x to a variable n :
n := round(x);

4.11.1.7 Sqr Function

The square function returns the square (ie the argument multiplied by itself) of its argument.

Syntax

sqr(x)

Description

The result of the function will be of the same type as the argument. Hence the Sqr value of an integer
will be an integer, and the Sqr value of a real expression will be a real value.

Example

Sqr(2) returns the value 4

To assign the square of a variable x to a variable n :
n := sqr(x);

See also Exp Function and Power Function

4.11.1.8 Sqrt Function

This function returns the square root of its argument.

Syntax

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 57

sqrt(x)

Where the argument (x) is an integer or real expression and the result is real.

Example

Sqrt(4) returns 2.0

To assign the square root of a variable x to a variable n :
n := sqrt(x);

4.11.1.9 Trunc Function

This function returns the whole part (ie no decimal places) of a real number.

Syntax

trunc(x)

Where the argument (x) is a real expression and the result is integer.

Example

Trunc(4.87) returns 4
Trunc(-3.4) returns -3

To assign the truncated part of variable x to a variable n :
n := trunc(x);

4.11.1.10 Power Function

The power function returns the value of a number raised to the power of another number.

Syntax

power(X, Y)

x and y are Real

Description

The result of the function is a real value equal to XY .

Example

power(2, 3) returns the value 8

y := power(x, 4); assigns the fourth power of x to the variable y

See also Exp Function and Sqr Function

4.11.2 Trigonometric Functions

Pascal has several standard trigonometric functions that you can utilize. For example, to find the
value of sin of radians,

value := sin(3.14159);

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 58

For all trigonometry functions, the angular measurements are always in radians. There are 2
radians in 360º.

The trigonometry functions in the Logic Engine are :
Sin Function
Cos Function
ArcTan Function

To use other trigonometric functions, it is necessary to combine the above functions. For example,
to find the tangent of a variable x :

tan := sin(x) / cos(x);

To convert from degrees to radians, divide by 180 then multiply by . For example, to calculate the
cosine of 270 degrees :

value := cos(270 / 180 * Pi);

Note that there is a Constant called Pi.

4.11.2.1 Sin Function

The SINe function returns the sine of its argument (in radians).

Syntax

sin(x)

Where the argument (x) is a real expression and the result is real.

Example

To assign the sine of a variable x to a variable n :
n := sin(x);

4.11.2.2 Cos Function

The COSine function returns the cosine value, of its argument (in radians).

Syntax

cos(x)

Where the argument (x) is a real expression and the result is real.

Example

To assign the cosine of a variable x to a variable n :
n := cos(x);

4.11.2.3 ArcTan Function

The ARCTANgent function returns the arc tangent value, in radians, of its argument.

Applicability

Colour C-Touch only.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 59

Syntax

ArcTan(x)

Where the argument (x) is a real expression and the result is real.

Example

To assign the arc tangent of a variable x to a variable n :
n := arctan(x);

4.11.3 Ordinal Functions

For ordinal data types (integer, char or Enumerated Types), which have a distinct predecessor and
successor, you can use these functions:

Chr Function
ChrW Function
Ord Function
ChrW Function
Pred Function
Succ Function

Note that Real is not an ordinal data type. That's because it has no distinct successor or
predecessor. What is the successor of 56.0? It could be 56.1, 56.01, 56.001, 56.0001, 56.00001,
56.000001 or any other value.

However, for an integer 56, there is a distinct predecessor (55) and a distinct successor (57).

The same is true of characters. 'b' has a successor ('c') and a predecessor ('a').

4.11.3.1 Chr Function

The chr function returns the character for a specified ASCII value.

Syntax

chr(x)

Where the argument (x) is an integer expression and the result is a char.

Description

Chr returns the character with the ordinal value (ASCII value) of the integer expression, x. x must be
between 0 and 255.

Example

chr(65) equals 'A'

To assign a char with the ordinal value of variable x to a variable char1 :
char1 := chr(x);

See also ChrW Function

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 60

4.11.3.2 ChrW Function

The ChrW function returns the character for a specified Unicode value.

Applicability

Colour C-Touch only.

Syntax

ChrW(x)

Where the argument (x) is an integer expression and the result is a char.

Description

ChrW returns the character with the ordinal value of the integer expression, x. x must be between 0
and 65535.

Example

chrw(65) equals 'A'

chrw(8364) equals '€'

To assign a char with the ordinal value of variable x to a variable char1 :
char1 := chrw(x);

See also Chr Function

4.11.3.3 Ord Function

The ord function returns the ordinal value of an ordinal-type expression.

Syntax

ord(c)

Description

c is an ordinal type expression. The result is an integer, and its value is the ordinal position of c. If C
is a Char Type, then ord returns the ASCII value.

Example

ord('A') equals 65 (ASCII value)
ord(Tuesday) equals 1 - where the enumerated type (Monday, Tuesday, Wednesday,

Thursday, Friday) is defined

To determine whether char c is an ASCII carriage return character :
if ord(c) = 13 then ...

See also OrdW Function

4.11.3.4 OrdW Function

The OrdW function returns the ordinal value of a Unicode character expression.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 61

Applicability

Colour C-Touch only.

Syntax

OrdW(c)

Description

c is a Unicode character. The result is an integer, and its value is the Unicode value of c.

Example

ordw('A') equals 65 (ASCII / Unicode value)
ordw('€') equals 8364 (Unicode value)

To determine whether char c is a Euro character (€) :
if ordw(c) = 8364 then ...

See also Ord Function

4.11.3.5 Pred Function

The pred function returns the predecessor of the argument.

Syntax

pred(n)

Description

n is an expression of an ordinal type. The result, of the same type as n, is the predecessor of n.

Example

pred(20) equals 19
pred('C') equals 'B'
pred(Tuesday) equals Monday - where the enumerated type (Monday, Tuesday,

Wednesday, Thursday, Friday) is defined

4.11.3.6 Succ Function

The succ function returns the successor of the argument.

Syntax

succ(n)

Description

n is an expression of an ordinal type. The result, of the same type as n, is the successor of n.

Example

succ(20) equals 21

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 62

succ('C') equals 'D'
succ(Tuesday) equals Wednesday - where the enumerated type (Monday, Tuesday,

Wednesday, Thursday, Friday) is defined

4.11.4 Tutorial 3

Question 1

What is the value assigned to the variables in the following :

1. int1 := abs(-10);
2. bool1 := odd(5);
3. int1 := random(10) + 5;
4. int1 := round(3.5);
5. int1 := trunc(3.5);
6. char1 := chr(ord('A') + 2);
7. int1 := succ(4);

Tutorial Answers

4.12 Tags

For many Logic Engine functions (not standard Pascal functions), it is possible to use a name in
place of an integer index. For example, instead of

SetScene(23);

you can use

SetScene("All Off");

which makes the purpose much more clear.

This name is called a "tag", and is some text within double quotes. When the project is Compiled,
the tag is turned into an integer, and when the project is Run, the integer value is used.

Note that tags are very different from Strings, and the two are not interchangeable. A string is some
text which is used in the program. A tag represents a number.

Tags (other than C-Bus Tags) are case sensitive, hence the following tags are not equivalent :
"Schedule 1", "schedule 1", "SCHEDULE 1".

Tags may have spaces or any other character (unlike Identifiers, which can only have specific
characters). Hence, the following are valid tags : "Kitchen Light", "Light #3", "Lounge & Dining".

Tags can be used for :
C-Bus Networks, Applications, Group Addresses, Levels and Ramp Rates
Page Names
Scene Names
System IO Variable Names
Module Names
Dates
Time
Images
Special Day Names
Special Functions
Page Transition Effects

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 63

Pulse Power Meter Names
Energy Tariff Names
Profile Name

4.13 Date Functions

The Logic Engine represents dates with Integers. The value is the number of days that have passed
since December 30 1899.

Following are some examples of Date numeric values and their corresponding dates:

Value Date

0 Dec 30 1899

2 Jan 1 1900

-1 Dec 29 1899

35065 Jan 1 1996

To find the number of days between two dates, simply subtract the two values. Likewise, to
increment a date value by a certain number of days, simply add the number to the date value.

The Logic Engine provides the following functions for manipulating Dates :
Date Function
DateToString Procedure
Day Function
DayOfWeek Function
DayOfYear Function
DecodeDate Procedure
EncodeDate Function
Month Function
Year Function

Tags can be used for dates, month names and days of the week. The interpretation of the date
tags depends upon the date format selected in the Windows Control Panel. Example date
tags in this document are given in Day/Month/Year format.

The Month and Day names can be complete, or just the first three letters.

For example :

Tag Value

"1/1/1996" 35065

"1 Jan 2003" 35065

"January" 1

"Feb" 2

"Monday" 2

"Tue" 3

"2 Jan" 2

Note: PAC and Black and White C-Touch will only support dates since 1 Jan 2000.

See also Time Functions
4.13.1 Date Function

The Date function returns an integer which represents the current Date.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 64

Syntax

date

Description

The value of the Date function is the number of days which have passed since 30 Dec 1899. Note
that the PAC can not use dates prior to 1 Jan 2000.

Example

To assign the current date to a variable n :
n := date;

To perform an action if the date is Jan 1 2010 :
if date = "1/1/2010" then ...

See also Date Tags.

4.13.2 Day Function

The Day function returns an integer which represents the current day of the month (1 to 31).

Syntax

day

Description

The value of the Day function is the day of the month. See also DayOfYear Function.

Example

To assign the current day of the month to a variable n :
n := day;

To perform an action if the date is July 14th :
if (day = 14) and (month = "July") then ...

4.13.3 DayOfWeek Function

The DayOfWeek function returns an integer which represents the current day of the week.

Syntax

DayOfWeek

Description

The values representing the days of the week are :
Sunday = 1 ... Saturday = 7

Example

To assign the current day of the week to a variable n :
n := DayOfWeek;

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 65

To perform an action if the day of the week is Tuesday :
if DayOfWeek = 3 then ...

or
if DayOfWeek = "Tuesday" then ...

See also Date Tags.

4.13.4 DayOfYear Function

The DayOfYear function returns an integer which represents the current day of the year (1 to 366).

Syntax

DayOfYear

Description

The value of the DayOfYear function is the number of the day of the year. The function treats every
year as if it is a leap year (ie. has a Feb 29th) in order for the date to have the same day number
each year. This simplifies comparisons.

Example

To assign the current day of the year to a variable n :
n := DayOfYear;

To perform an action if the day of the year is April 18th :
if DayOfYear = "18 Apr" then

 ...

4.13.5 DecodeDate Procedure

The DecodeDate procedure decodes a Date value to give the day, month and year.

Syntax

DecodeDate(Date1, Year1, Month1, Day1);

Date1 is an Integer expression
Day1, Month1, Year1 are integer variables

Description

The DecodeDate procedure is used to extract the day, month and year from a numerical date.

Example

The code :
Date1 := 35065; { 1/1/1996 }
DecodeDate(Date1, y, m, d);

results in y = 1996, m = 1, d = 1

4.13.6 EncodeDate Function

The EncodeDate function encodes a Date value given the day, month and year.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 66

Syntax

EncodeDate(Year1, Month1, Day1)

Day1, Month1, Year1 are integer expressions

Description

The EncodeDate procedure is used to convert the day, month and year to a numerical date.

Example

To encode the date 1 Jan 1996 an assign it to a variable called Date1 :
Date1 := EncodeDate(1996, 1, 1);

This results in Date1 becoming 35065.

4.13.7 Month Function

The Month function returns an integer which represents the current month of the year (1 to 12).

Syntax

month

Description

The value of the Month function is the month of the year. See also DayOfYear Function.

Example

To assign the current month to a variable n :
n := month;

To perform an action if the month is February :
if Month = "Feb" then

 ...

See also Date Tags.

4.13.8 Year Function

The Year function returns an integer which represents the current year.

Syntax

year

Example

To assign the current year to a variable n :
n := year;

4.14 Time Functions

The Logic Engine represents times with Integers. The value is the number of seconds that have
passed since midnight.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 67

Following are some examples of Time numeric values and their corresponding times:

Value Time (24 hour) Time (AM/PM)

0 00:00:00 12:00:00 AM

1 00:00:01 12:00:01 AM

43200 12:00:00 12:00:00 PM

86399 23:59:59 11:59:59 PM

To find the number of seconds between two times, simply subtract the two values. Likewise, to
increment a time value by a certain number of seconds, simply add the number to the time value.

The Logic Engine provides the following functions for manipulating Times :
DecodeTime Procedure
EncodeTime Function
Hour Function
Minute Function
Second Function
Sunrise Function
Sunset Function
Time Function
TimeToString Procedure

See also Timer Functions and Date Functions

Tags can be used for the time, instead of using a number. The interpretation of the time tags
depends upon the time format selected in the Windows Control Panel. Example time tags in
this document generally use AM/PM format.

Examples :
"7:00PM"
"23:00:00"

4.14.1 DecodeTime Procedure

The DecodeTime procedure decodes a Time value to give the hour, minute and second.

Syntax

DecodeTime(Time1, Hour1, Min1, Sec1);

Time1 is an Integer expression
Hour1, Min1 and Sec1 are integer variables

Example

The code :
Time1 := 43200; { 12:00:00 noon }
DecodeTime(Time1, h, m, s);

results in h = 12, m = 0, s = 0

4.14.2 EncodeTime Function

The EncodeTime function encodes a Time value to given the hour, minute and second.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 68

Syntax

EncodeTime(Hour1, Min1, Sec1)

Hour1, Min1 and Sec1 are integer expressions

Example

To encode the time 12:00 noon and assign in to a variable called Time1 :
Time1 := EncodeTime(12, 0, 0);

This results in Time1 becoming 43200.

4.14.3 Hour Function

The Hour function returns an integer which represents the current hour of the day (0 to 23).

Syntax

hour

Example

To assign the current hour of the day to a variable n :
n := hour;

4.14.4 Minute Function

The Minute function returns an integer which represents the current minute of the hour (0 to 59).

Syntax

minute

Example

To assign the current minute of the hour to a variable n :
n := minute;

4.14.5 RunTime Function

The RunTime function returns an integer which represents the number of seconds which have
elapsed since the logic started running.

Syntax

RunTime

Example

To do something 10 seconds after start-up :
once RunTime = 10 then...

The RunTime function can be used a bit like another timer. If we wanted to determine the time which
a Group Address has been on :

once GetLightingState("Main Light") = ON then

 StartTime = RunTime;

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 69

once GetLightingState("Main Light") = OFF then

begin

 ElapsedTime = RunTime - StartTime;

 ...

end;

4.14.6 Second Function

The Second function returns an integer which represents the current second of the minute (0 to 59).

Syntax

second

Example

To assign the current second of the minute to a variable n :
n := second;

To perform an action at the start of every minute :
if Second = 0 then ...

4.14.7 Sunrise Function

The Sunrise function returns an integer which represents the Time of sunrise.

Syntax

sunrise

Description

The sunrise time depends on :
The location (longitude and latitude) - this can be set in the Project Details
The date
Daylight Savings - this can be set in the Project Details

Example

To assign today's sunrise time to a variable n :
n := sunrise;

To do something is the time is an hour before sunrise :
if time = Sunrise - "1:00:00" then ...

To do something if the time is after sunset but before sunrise (i.e. it is dark outside) :
if (time > sunset) or (time < sunrise) then...

Note that the following will not work, because it is not possible for a time to be both greater than
sunset and less than sunrise :

if (time > sunset) and (time < sunrise) then... { do NOT do this }

To do something if the time is after sunrise but before sunset (i.e. it is light outside) :
if (time > sunrise) and (time < sunset) then...

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 70

4.14.8 Sunset Function

The Sunset function returns an integer which represents the Time of sunset.

Syntax

sunset

Description

The sunset time depends on :
The location (longitude and latitude) - this can be set in the Project Details
The date
Daylight Savings - this can be set in the Project Details

Example

To assign today's sunset time to a variable n :
n := sunset;

To do something is the time is an hour after sunset :
if time = Sunset + "1:00:00" then ...

See also Sunrise Function examples

4.14.9 Time Function

The Time function returns an integer which represents the current Time (0 to 86399).

Syntax

time

Examples

To store the current time in integer variable n :
n := time;

To do something if the time is between 9PM and midnight :
if (time >= "9:00PM") and (time <= "11:59:59PM") then ...

Note that the following will not work :
if (time >= "9:00PM") and (time <= "12:00AM") then ...

because the time "12:00AM" is a value of 0, and hence the expression will never be true.

Note that it is actually not even necessary to compare the time with midnight in this case. You could
just write :

if (time >= "9:00PM") then ...

since if the time is after 9PM, it must, by definition, be before midnight.

Note that if you want to check to see if a time is between 9PM and 7AM, the following code will not
work :

if (time >= "9:00PM") and (time <= "7:00AM") then ...

The reason is that a time can not be both after 9PM and before 7AM. The correct logic code is :
if (time >= "9:00PM") or (time <= "7:00AM") then ...

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 71

If you needed to do it the other way around (between 7AM and 9PM), the code would be :
if (time >= "7:00AM") and (time <= "9:00PM") then ...

If you wanted to perform an action every hour, on the hour, your could write code like this :
if (time mod 3600) = 0 then ...

or
if (Minute = 0) and (Second = 0) then ...

4.15 C-Bus Functions

One of the primary purposes of the Logic Engine is to provide control and monitoring of C-Bus.

There are a series of functions provided for access to C-Bus Group Address levels and states :
GetCBusLevel Function
GetCBusRampRate Function
GetCBusState Function
GetCBusTargetLevel Function
GetEnableLevel Function
GetEnableState Function
GetLightingLevel Function
GetLightingState Function
GetTriggerLevel Function
PulseCBusLevel Procedure
SetCBusLevel Procedure
SetCBusState Procedure
SetEnableLevel Procedure
SetEnableState Procedure
SetLightingLevel Procedure
SetLightingState Procedure
SetTriggerLevel Procedure
TrackGroup Procedure
TrackGroup2 Procedure

There are also functions which enable the control and monitoring of C-Bus Scenes. These Scenes
are created with the PICED scene editor. The groups in a Scene can be controlled together as a
"set" of group addresses.

The functions for C-Bus Scenes are :
CrossFadeScene Procedure
GetSceneLevel Function
GetSceneMaxLevel Function
GetSceneMinLevel Function
NudgeSceneLevel Procedure
SceneIsSet Function
SetScene Procedure
SetSceneLevel Procedure
SetSceneOffset Procedure
StoreScene Procedure

Some C-Bus Units such as Temperature Sensors and Light Level Sensors do not broadcast their
data onto C-Bus. They must be interrogated to determine their parameters. The PICED software
provides Monitor Components which enable the unit parameters to be displayed. If a Monitor
Component is monitoring a unit parameter, then the Logic Engine has access to the parameter
values. The following functions are used for accessing unit parameters :

GetUnitStatus Function

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 72

GetUnitParameter Function
GetUnitParamStatus Function

4.15.1 C-Bus Level and State

C-Bus Group Address levels can be expressed in several ways, as follows.

Levels

On C-Bus, Group Addresses have a level from 0 to 255. To set a lighting Group Address number 4 to
a level of 255 (100%), you would use the function :

SetLightingLevel(4, 255, 0);

Generally you only use the Level of a Group Address if its exact value is important, otherwise, use
its state.

Percentage

Levels can also be expressed as a Percentage (from 0% to 100%). To set a lighting Group Address
number 4 to a level of 100%, you would use the function :

SetLightingLevel(4, 100%, 0);

In the above example, the compiler converts the value 100% to its corresponding level (255).

If you have a variable which contains a level in percent, you must convert it to a level before being
used by a C-Bus Function. For example :

SetLightingLevel(4, PercentToLevel(NewLevel), 0);

State

The state of a Group Address is a Boolean value (true/false or on/off). If the level is 0, then the state
is false/off. For a level of 1 - 255, the state is true/on.

The State of a Group Address is used where the exact level is not important. For example, if you
want to perform an action if a Group Address state is ON, but you are not concerned with its exact
level :

if GetLightingState(4) then ...

or

if GetLightingState(4) = ON then ...

In the above cases, the condition will be true if the level is anywhere between level 1 and level 255.
This condition is equivalent to :

if GetLightingLevel(4) > 0 then ...

A comparison of the alternatives for expressing a C-Bus level is given below :

Percentage Level State
0% 0 False / Off
1% 2 True / On

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 73

2% 5 True / On
50% 127 True / On

100% 255 True / On

4.15.2 Tags

C-Bus Tags are used to make the code easier to read and understand. For example:

GetCBusLevel("Local Network", "Lighting", "Kitchen")

is easier to read than

GetCBusLevel(254, 56, 32)

C-Bus Tags give names to the following C-Bus properties :
Network Names
Application Names
Group Address Names
Level Names

The tags are created with the C-Bus Installation Software, and can be read from the database to
avoid the need to use numbers for the above properties when using the C-Bus Functions.

Tags can also be used for :
Ramp Rates
Scene Names

Ramp rate tags are of the format :
"number s" for a number of seconds; or
"number m" for a number of minutes

C-Bus only supports ramp rates of 0, 4, 8, 12, 20, 30, 40, 60, 90, 120, 180, 300, 420, 600, 900 and
1020 seconds. If a ramp rate other than these is requested, then the closest one will be used.

Examples :
SetLightingLevel("Kitchen", 50%, "4s");

SetScene("All Off");

If logic code is intended to be re-usable, it is better to use constants for group addresses. Refer to
the Logic Templates topic for details.

To insert a group address tag in the logic code, select C-Bus/Insert Group Tag from the pop-up
menu.

See also C-Bus Tag Functions

4.15.3 CrossFadeScene Procedure

The CrossFadeScene procedure sets the level of a C-Bus Scene Group Addresses to their default
levels, but using Ramp Rates selected such that all Groups get to their final level at approximately
the selected time.

Syntax

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 74

CrossFadeScene(SceneNumber, Duration);

SceneNumber is an Integer or Scene Tag.
Duration is a time, in seconds.

Description

The Scene Groups are set to their default levels. Each group address is ramped with a rate which
depends on the duration and the amount of level change required. Due to the limited choice of ramp
rates, the Group Addresses do arrive at their target levels at slightly different times. Note that the
index of the first Scene is 0, not 1.

Example

To cross fade to Scene "Party" over 8 seconds :
CrossFadeScene("Party", 8);

4.15.4 GetCBusLevel Function

The GetCBusLevel function returns the level of a C-Bus Group Address.

Syntax

GetCBusLevel(Network, Application, GroupAddress)

Network is an Integer or Network Tag.
Application is an Integer or Application Tag.
GroupAddress is an Integer or Group Address Tag.

Description

The integer result is the level of the Group Address.

Example

To assign the value of Group Address 32 on Application 56 (lighting) on Network 254 to variable Level
:

Level := GetCBusLevel(254, 56, 32);

To perform an action if the value of Group Address called "Kitchen" on the "Lighting" Application on
the "Local Network" is 100% :

if GetCBusLevel("Local Network", "Lighting", "Kitchen") = 100% then ...

4.15.5 GetCBusRampRate Function

The GetCBusRampRate function returns the ramp rate of a ramping C-Bus Group Address.

Syntax

GetCBusRampRate(Network, Application, GroupAddress)

Network is an Integer or Network Tag.
Application is an Integer or Application Tag.
GroupAddress is an Integer or Group Address Tag.

Description

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 75

The integer result is the ramp rate of the Group Address in seconds.

Example

To assign the ramp rate of Group Address 32 on Application 56 (lighting) on Network 254 to variable
RampRate :

RampRate := GetCBusRampRate(254, 56, 32);

4.15.6 GetCBusState Function

The GetCBusState function returns the state of a C-Bus Group Address.

Syntax

GetCBusState(Network, Application, GroupAddress)

Network is an Integer or Network Tag.
Application is an Integer or Application Tag.
GroupAddress is an Integer or Group Address Tag.

Description

The boolean result is the state of the Group Address (true/false or on/off) .

Example

To assign the state of Group Address 32 on Application 56 (lighting) on Network 254 to variable
State :

State := GetCBusLevel(254, 56, 32);

To perform an action if Group Address called "Kitchen" on the "Lighting" Application on the "Local
Network" is on :

if GetCBusState("Local Network", "Lighting", "Kitchen") then ...

or
if GetCBusState("Local Network", "Lighting", "Kitchen") = ON then ...

4.15.7 GetCBusTargetLevel Function

The GetCBusTargetLevel function returns the target (final) level of a ramping C-Bus Group Address.

Syntax

GetCBusTargetLevel(Network, Application, GroupAddress)

Network is an Integer or Network Tag.
Application is an Integer or Application Tag.
GroupAddress is an Integer or Group Address Tag.

Description

The integer result is the level which the Group Address is ramping towards.

Example

To assign the target value of Group Address 32 on Application 56 (lighting) on Network 254 to
variable Level :

Level := GetCBusTargetLevel(254, 56, 32);

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 76

To perform an action if the Group Address called "Kitchen" on the "Lighting" Application on the
"Local Network" is ramping :

if GetCBusTargetLevel("Local Network", "Lighting", "Kitchen") <>
GetCBusLevel("Local Network", "Lighting", "Kitchen") then ...

4.15.8 GetCBusTimer Function

The GetCBusTimer function returns the value of the timer for a C-Bus Group Address.

Syntax

GetCBusTimer(Network, Application, GroupAddress)

Network is an Integer or Network Tag.
Application is an Integer or Application Tag.
GroupAddress is an Integer or Group Address Tag.

Description

The integer result is the timer value for the Group Address. This is the time in seconds before the
timer "expires". A value of -1 means that the timer has already expired. Note that this will only give
the value of the timer running locally. If the timer is in a different unit (for example, a key input
switch), it is not possible to know the value of the timer.

Example

To perform an action if the Group Address called "Kitchen" on the "Lighting" Application on the
"Local Network" has just timed out :

once GetCBusTimer("Local Network", "Lighting", "Kitchen") = -1 then ...

4.15.9 GetEnableLevel Function

The GetEnableLevel function returns the level of a C-Bus Enable Control Group.

Syntax

GetEnableLevel(EnableGroup)

EnableGroup is an Integer or Group Address Tag.

Description

The integer result is the value (0 to 255) of the Enable Group on the Enable Control Application on
the Local Network. Note that the result is the same as using the GetCBusLevel function with the
Local Network number and the Enable Control Application address ($CB).

Example

To assign the value of Enable Group 32 to variable Level :
Level := GetEnableLevel(32);

To perform an action if the value of the Enable Control Group called "Enable Irrigation" is 100% :
if GetEnableLevel("Enable Irrigation") = 100% then ...

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 77

4.15.10 GetEnableState Function

The GetEnableState function returns the state of a C-Bus Enable Control Group.

Syntax

GetEnableState(EnableGroup)

EnableGroup is an Integer or Group Address Tag.

Description

The boolean result is the state of the Enable Group (true/false or on/off) on the Enable Control
Application on the Local Network. Note that the result is the same as using the GetCBusState
function with the Local Network number and the Enable Control Application address ($CB).

Example

To assign the state of Enable Group 32 to variable State :
State := GetEnableState(32);

To perform an action if the Enable Group called "Enable Irrigation" is on :
if GetEnableState("Enable Irrigation") then ...

or
if GetEnableState("Enable Irrigation") = ON then ...

4.15.11 GetLightingLevel Function

The GetLightingLevel function returns the level of a C-Bus Group Address.

Syntax

GetLightingLevel(GroupAddress)

GroupAddress is an Integer or Group Address Tag.

Description

The integer result is the level of the Group Address on the Lighting Application on the Local Network.
Note that the result is the same as using the GetCBusLevel function with the Local Network number
and the default Lighting Application address ($38).

Example

To assign the value of Lighting Group 32 to variable Level :
Level := GetLightingLevel(32);

To perform an action if the value of the Lighting Group called "Kitchen" is 100% :
if GetLightingLevel("Kitchen") = 100% then ...

4.15.12 GetLightingState Function

The GetLightingState function returns the state of a C-Bus Group Address.

Syntax

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 78

GetLightingState(GroupAddress)

GroupAddress is an Integer or Group Address Tag.

Description

The boolean result is the state of the Group Address (true/false or on/off) on the Lighting Application
on the Local Network. Note that the result is the same as using the GetCBusState function with the
Local Network number and the default Lighting Application address ($38).

Example

To assign the state of Lighting Group 32 to variable State :
State := GetLightingState(32);

To perform an action if the Lighting called "Kitchen" is on :
if GetLightingState("Kitchen") then ...

or
if GetLightingState("Kitchen") = ON then ...

4.15.13 GetSceneLevel Function

The GetSceneLevel function returns the level of a C-Bus Scene.

Syntax

GetSceneLevel(SceneNumber)

SceneNumber is an Integer or Scene Tag.

Description

The integer result is the "value" of the Scene. There are three possible types of result :

Value Meaning
-2 The Scene group levels are all different and do not match the default scene

setting
-1 The Scene group are set to their default level
0 to 255 The Scene groups are all set to this value

Scenes can be used as a collection of Group Addresses which are controlled or monitored together.

Note that the index of the first Scene is 0, not 1.

Example

To assign the level of Scene 32 to variable Level:
Level := GetSceneLevel(32);

To perform an action if the value of the Scene called "Upstairs" is 100%:
if GetSceneLevel("Upstairs") = 100% then ...

To check to see if a Scene is set:
if GetSceneLevel("Away From Home") = -1 then ...

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 79

Note that the last example checks that all of the Scene Components are at their target level. If the
Scene is in the process of being set and Groups are ramping towards their final levels, the value of
GetSceneLevel will not be -1. To check if a Scene is set, or in the process of being set, use the
SceneIsSet Function.

4.15.14 GetSceneMaxLevel Function

The GetSceneMaxLevel function returns the maximum level of the groups in a C-Bus Scene.

Syntax

GetSceneMaxLevel(SceneNumber)

SceneNumber is an Integer or Scene Tag.

Description

The integer result is maximum of the levels of the groups in Scene SceneNumber. Scenes can be
used as a collection of Group Addresses which are controlled or monitored together. Note that the
index of the first Scene is 0, not 1.

Example

To determine whether all of the groups in Scene 32 are off :
if GetSceneMaxLevel(32) = 0 then ...

To determine whether any of the groups in the Scene called "Upstairs" are on :
if GetSceneMaxLevel("Upstairs") > 0 then ...

4.15.15 GetSceneMinLevel Function

The GetSceneMinLevel function returns the minimum level of the groups in a C-Bus Scene.

Syntax

GetSceneMinLevel(SceneNumber)

SceneNumber is an Integer or Scene Tag.

Description

The integer result is minimum of the levels of the groups in Scene SceneNumber. Scenes can be
used as a collection of Group Addresses which are controlled or monitored together. Note that the
index of the first Scene is 0, not 1.

Example

To determine whether all of the groups in Scene 32 are on :
if GetSceneMinLevel(32) > 0 then ...

To determine whether any of the groups in the Scene called "Upstairs" are off :
if GetSceneMinLevel("Upstairs") = 0 then ...

4.15.16 GetTriggerLevel Function

The GetTriggerLevel function returns the level (Action Selector) of a C-Bus Trigger Control Group.

Syntax

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 80

GetTriggerLevel(TriggerGroup)

TriggerGroup is an Integer or Group Address Tag.

Description

The integer result is the value of the Trigger Group (0 to 255) on the Trigger Control Application on
the Local Network. Note that the result is the same as using the GetCBusLevel function with the
Local Network number and the Trigger Control Application address ($CA).

Note that there is no GetTriggerState function, as the concept of a state is meaningless within the
Trigger Control Application.

Example

To assign the value of Trigger Group 32 to variable Level :
Level := GetTriggerLevel(32);

To perform an action if the value of the Trigger Control Group called "Scenes" is 100% :
if GetTriggerLevel("Scenes") = 100% then ...

4.15.17 GetUnitStatus Function

The GetUnitStatus function returns whether the C-Bus unit is operating.

Syntax

GetUnitStatus(Network, UnitAddress)

Network is an Integer or Network Tag.
UnitAddress is an Integer.

Description

The Boolean result is whether the unit is operating or not. Note that there needs to be a Monitor
monitoring the value of a parameter on the unit for the software to be able to determine if the unit is
replying to messages or not.

Example

To determine whether the C-Bus unit with unit address 5 on the Local Network is operating :
if GetUnitStatus("Local Network", 5) then ...

4.15.18 GetUnitParameter Function

The GetUnitParameter function returns the value of a C-Bus unit parameter.

Syntax

GetUnitParameter(Network, UnitAddress, ParameterType)

Network is an Integer or Network Tag.
UnitAddress is an Integer.
ParameterType is an Integer.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 81

Description

The real result is the value of the selected parameter on the selected unit. The options for the
ParameterType are :

Value Constant Parameter Returned Applicable Unit Types

1 ptTemperature Temperature (ºC or ºF) Temperature Sensor

2 ptLightLevel Light Level (Lux) Light Level Sensor

3 ptVoltage Voltage (Volts) C-Bus 2 Output Units

Notes :
The unit address must correspond to a unit of the correct type to get meaningful data.
A Monitor component with the matching unit address and parameter must be used in the Project
in order to have the data available.
The values returned are only as accurate as the unit sensors. Without calibration, the accuracy is
not guaranteed.
The units of temperature (ºC or ºF) are set in the PICED Project Details.
The unit parameter status should be checked before the value is used
See also the Monitor Value System IO variable

Example

To assign the light level of unit address 5 on the Local Network to the variable Level :
Level := GetUnitParameter("Local Network", 5, ptLightLevel);

4.15.19 GetUnitParamStatus Function

The GetUnitParamStatus function returns whether the value returned by the GetUnitParameter
Function is valid.

Syntax

GetUnitParamStatus(Network, UnitAddress, ParameterType)

Network is an Integer or Network Tag.
UnitAddress is an Integer.
ParameterType is an Integer.

Description

The Boolean result is whether the value of the selected parameter on the selected unit is valid or not.
The parameter value will only be valid once the value has been successfully read from the C-Bus
unit. Possible reasons for the status being false are :

Incorrect Network
Incorrect UnitAddress
Incorrect ParameterNo
The C-Bus connection has not yet fully synchronised all units
There is no PICED Monitor Component monitoring this value

Example

To determine whether the light level of unit address 5 on the Local Network is valid before using it :
if GetUnitParamStatus("Local Network", 5, ptLightLevel) then ...

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 82

4.15.20 NudgeSceneLevel Procedure

The NudgeSceneLevel procedure adjusts the level of a C-Bus Scene Group Addresses by a
particular offset.

Syntax

NudgeSceneLevel(SceneNumber, Offset, RampRate);

SceneNumber is an Integer or Scene Tag.
Offset is an Integer or Percent
RampRate is an integer (number of seconds) or Ramp Rate Tag

Description

The Scene Groups are adjusted by a particular offset at a particular ramp rate. Scenes can be used
as a collection of Group Addresses which are controlled or monitored together. Note that the index
of the first Scene is 0, not 1.

If you have selected Nudge/Ramp only On Groups in Scenes in the Project Details, then only the
Scene Groups which are already on will be nudged.

Example

To adjust the values of the Group Addresses in Scene 32 by 10% instantaneously :
NudgeSceneLevel(32, 10%, 0);

To adjust the value of the Group Addresses in Scene called "Upstairs" by -20% over 4 seconds :
NudgeSceneLevel("Upstairs", -20%, "4s");

4.15.21 PulseCBusLevel Procedure

The PulseCBusLevel procedure pulses the level of a C-Bus Group Address.

Syntax

PulseCBusLevel(Network, Application, GroupAddress, NewLevel, RampRate,
Duration, FinalLevel);

Network is an Integer or Network Tag.
Application is an Integer or Application Tag.
GroupAddress is an Integer or Group Address Tag.
NewLevel is an Integer, Percent or Level Tag
RampRate is an integer (number of seconds) or Ramp Rate Tag
Duration is an integer (number of seconds) or Duration Tag
FinalLevel is an Integer, Percent or Level Tag

Description

The Group Address on the selected Application and Network gets set to the NewLevel, with a
specified Ramp Rate. After a delay of Duration seconds, the level is set to the FinalLevel. If the level
is to return to the original level before the pulse commenced, use a value of -1 as the FinalLevel.

Example

To set the value of Group Address 32 on Application 56 (lighting) on Network 254 to level 255
immediately, and set the level back to 0 following a delay of 10 seconds :

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 83

PulseCBusLevel(254, 56, 32, 255, 0, 10, 0);

To set the value of Group Address called "Kitchen" on the "Lighting" Application on the "Local
Network" to 50% over 4 seconds, then set back to the original level after one minute :

PulseCBusLevel("Local Network", "Lighting", "Kitchen", 50%, "4s", "0:01:00",
-1);

4.15.22 SceneIsSet Function

The SceneIsSet function returns whether a Scene is set.

Syntax

SceneIsSet(SceneNumber)

SceneNumber is an Integer or Scene Tag.

Description

The SceneIsSet function returns a boolean value corresponding the the state of a Scene indicator. It
shows if the Scene Groups are at their target levels, or are ramping towards them.

Example

To switch off a set of lights if they are not already off (or ramping towards off):

if not SceneIsSet("All Off") then
begin
 SetScene("All Off");
end;

See also GetSceneLevel Function

4.15.23 SetCBusLevel Procedure

The SetCBusLevel procedure sets the level of a C-Bus Group Address.

Syntax

SetCBusLevel(Network, Application, GroupAddress, NewLevel, RampRate);

Network is an Integer or Network Tag.
Application is an Integer or Application Tag.
GroupAddress is an Integer or Group Address Tag.
NewLevel is an Integer, Percent or Level Tag
RampRate is an integer (number of seconds) or Ramp Rate Tag

Description

The Group Address on the selected Application and Network gets set to the NewLevel, with a
specified Ramp Rate. If you select a ramp rate other than the standard ramp rates, it will choose the
closest one.

Example

To set the value of Group Address 32 on Application 56 (lighting) on Network 254 to level 255
immediately :

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 84

SetCBusLevel(254, 56, 32, 255, 0);

To set the value of Group Address called "Kitchen" on the "Lighting" Application on the "Local
Network" to 50% over 4 seconds :

SetCBusLevel("Local Network", "Lighting", "Kitchen", 50%, "4s");

4.15.24 SetCBusState Procedure

The SetCBusState procedure sets the state of a C-Bus Group Address.

Syntax

SetCBusState(Network, Application, GroupAddress, NewState);

Network is an Integer or Network Tag.
Application is an Integer or Application Tag.
GroupAddress is an Integer or Group Address Tag.
NewState is a Boolean value

Description

The Group Address on the selected Application and Network gets set to the NewState immediately
(zero ramp rate).

Example

To set the value of Group Address 32 on Application 56 (lighting) on Network 254 to level 255
immediately :

SetCBusState(254, 56, 32, ON);

To set the value of Group Address called "Kitchen" on the "Lighting" Application on the "Local
Network" to 0% immediately :

SetCBusState("Local Network", "Lighting", "Kitchen", OFF)

4.15.25 SetEnableLevel Procedure

The SetEnableLevel procedure sets the level of a C-Bus Enable Group.

Syntax

SetEnableLevel(EnableGroup, NewLevel);

EnableGroup is an Integer or Group Address Tag.
NewLevel is an Integer, Percent or Level Tag

Description

The Enable Group on the Local Network gets set to the NewLevel, instantaneously. Note that the
result is the same as using the SetCBusLevel function with the Local Network number, the Enable
Control Application address ($CB) and zero ramp rate.

Example

To set the value of Enable Group 32 to level 255 :
SetEnableLevel(32, 255);

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 85

To set the value of the Enable Group called "Enable Irrigation" to level 255 :
SetEnableLevel("Enable Irrigation", 100%);

4.15.26 SetEnableState Procedure

The SetEnableState procedure sets the state of a C-Bus Enable Group.

Syntax

SetEnableState(EnableGroup, NewState);

EnableGroup is an Integer or Group Address Tag.
NewState is a Boolean value

Description

The Enable Group on the Local Network gets set to the NewState, instantaneously. Note that the
result is the same as using the SetCBusState function with the Local Network number, the Enable
Control Application address ($CB).

Example

To set the value of Enable Group 32 to on (level 255) :
SetEnableState(32, ON);

To set the value of the Enable Group called "Enable Irrigation" to on (level 255) :
SetEnableState("Enable Irrigation", ON);

4.15.27 SetLightingLevel Procedure

The SetLightingLevel procedure sets the level of a C-Bus Lighting Group Address.

Syntax

SetLightingLevel(GroupAddress, NewLevel, RampRate);

GroupAddress is an Integer or Group Address Tag.
NewLevel is an Integer, Percent or Level Tag
RampRate is an integer (number of seconds) or Ramp Rate Tag

Description

The Group Address on the Local Network gets set to the NewLevel, instantaneously. Note that the
result is the same as using the SetCBusLevel function with the Local Network number and the
Lighting Application address ($38).

Example

To set the value of Group Address 32 to level 255 instantaneously :
SetLightingLevel(32, 255, 0);

To set the value of the Group Address called "Kitchen" to level 255 over 4 seconds :
SetLightingLevel("Kitchen", 100%, "4s");

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 86

4.15.28 SetLightingState Procedure

The SetLightingState procedure sets the state of a C-Bus Lighting Group Address.

Syntax

SetLightingState(GroupAddress, NewState);

GroupAddress is an Integer or Group Address Tag.
NewState is a Boolean value

Description

The Group Address on the Local Network gets set to the NewState, instantaneously. Note that the
result is the same as using the SetCBusState function with the Local Network number and the
Lighting Application address ($38).

Example

To set the value of Group Address 32 to on (level 255) :
SetLightingState(32, ON);

To sets the value of the Group Address called "Kitchen" to on (level 255) :
SetLightingState("Kitchen", ON);

4.15.29 SetScene Procedure

The SetScene procedure sets the level of a C-Bus Scene Group Addresses to their default levels.

Syntax

SetScene(SceneNumber);

SceneNumber is an Integer or Scene Tag.

Description

The Scene Groups are set to their default levels with their default ramp rate. Note that the index of
the first Scene is 0, not 1.

Example

To set the value of the Group Addresses in Scene 32 to their default levels :
SetScene(32);

To set the value of the Group Addresses in Scene called "Upstairs" to their default levels :
SetScene("Upstairs");

See also CrossFadeScene Procedure

4.15.30 SetSceneLevel Procedure

The SetSceneLevel procedure sets the level of a C-Bus Scene Group Addresses to particular levels.

Syntax

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 87

SetSceneLevel(SceneNumber, NewLevel, RampRate);

SceneNumber is an Integer or Scene Tag.
NewLevel is an Integer or Percent
RampRate is an integer (number of seconds) or Ramp Rate Tag

Description

The Scene Groups are set to particular levels with a particular ramp rate. If you select a ramp rate
other than the standard ramp rates, it will choose the closest one.

There are two alternatives for the New Level :

New Level Meaning

-1 The Scene groups are set to their default level

0 to 255 The Scene groups are all set to this value

Scenes can be used as a collection of Group Addresses which are controlled or monitored together.

Note that the index of the first Scene is 0, not 1.

Example

To set the value of the Group Addresses in Scene 32 to 255 instantaneously :
SetSceneLevel(32, 255, 0);

To set the value of the Group Addresses in Scene called "Upstairs" to 50% over 4 seconds :
SetSceneLevel("Upstairs", 50%, "4s");

4.15.31 SetSceneOffset Procedure

The SetSceneOffset procedure sets the level of a C-Bus Scene Group Addresses to their default
level plus an offset.

Syntax

SetSceneOffset(SceneNumber, Offset, RampRate);

SceneNumber is an Integer or Scene Tag.
Offset is an Integer or Percent (-100% to +100%)
RampRate is an integer (number of seconds) or Ramp Rate Tag

Description

The Scene Groups are set to particular levels with a particular ramp rate. If you select a ramp rate
other than the standard ramp rates, it will choose the closest one. The level for each Group Address
is its default value plus the offset value. Note that the index of the first Scene is 0, not 1.

If you have selected Nudge/Ramp only On Groups in Scenes in the Project Details, then only the
Scene Groups which are already on will be adjusted.

Example

To set the value of the Group Addresses in Scene 32 to 10% higher than the default level
instantaneously :

SetSceneOffset(32, 10%, 0);

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 88

To set the value of the Group Addresses in Scene called "Upstairs" to 10% lower than the default
over 4 seconds :

SetSceneOffset("Upstairs", -10%, "4s");

4.15.32 SetTriggerLevel Procedure

The SetTriggerLevel procedure sets the level (Action Selector) of a C-Bus Trigger Group.

Syntax

SetTriggerLevel(TriggerGroup, NewLevel);

TriggerGroup is an Integer or Group Address Tag.
NewLevel is an Integer, Percent or Level Tag

Description

The Trigger Group on the Local Network gets set to the NewLevel, instantaneously. Note that the
result is the same as using the SetCBusLevel function with the Local Network number, the Trigger
Control Application address ($CA) and zero ramp rate.

Note that there is no SetTriggerState function, as the concept of a state is meaningless within the
Trigger Control Application.

Example

To set the value of Trigger Group 32 to level 255 :
SetTriggerLevel(32, 255);

To set the value of the Trigger Group called "Scenes" to level 255 :
SetTriggerLevel("Scenes", 100%);

4.15.33 StoreScene Procedure

The StoreScene procedure stores the level of a C-Bus Scene Group Addresses.

Syntax

StoreScene(SceneNumber);

SceneNumber is an Integer or Scene Tag.

Description

The current levels of the Scene Group Addresses are stored in the Scene. Note that the index of the
first Scene is 0, not 1.

Example

To store the value of the Group Addresses in Scene 32 at their current levels :
StoreScene(32);

To store the value of the Group Addresses in Scene called "Upstairs" at their current levels :
StoreScene("Upstairs");

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 89

4.15.34 TrackGroup Procedure

The TrackGroup procedure sets the level of a C-Bus Group Address to match another Group
Address.

Syntax

TrackGroup(Network, Application, GroupAddress1, GroupAddress2);

Network is an Integer or Network Tag.
Application is an Integer or Application Tag.
GroupAddress1 and GroupAddress2 are Integers or Group Address Tags.

Description

The TrackGroup procedure makes GroupAddress2 on the selected Application and Network get set
to be the same level (and ramp rate if ramping) as GroupAddress1.

Note that if GroupAddress2 gets changed, the TrackGroup procedure will change it back to match
GroupAddress1.

See also TrackGroup2 Procedure

Example

See the FAQ topic Tracking a Group Address for examples.

4.15.35 TrackGroup2 Procedure

The TrackGroup2 procedure sets the level of two C-Bus Group Addresses to match each other.

Applicability

Colour C-Touch only.

Syntax

TrackGroup2(Network1, Application1, GroupAddress1, Network2, Application2,
GroupAddress2);

Network1 and Network 2 are Integers or Network Tags.
Application1 and Application 2 are Integers or Application Tags.
GroupAddress1 and GroupAddress2 are Integers or Group Address Tags.

Description

The TrackGroup2 procedure makes Group Addresses 1 and 2 track each other. If Group Address 1
(on Network 1, Application 1) changes, then Group Address 2 (on Network 2, Application 2) will be
changed to match and vice versa..

See also TrackGroup Procedure

Example

See the FAQ topic Tracking a Group Address for examples.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 90

4.15.36 C-Bus Tag Functions

C-Bus Tags are generally used in C-Bus Functions to make the code easier to read. The tag is
interpreted as a number by the logic engine.

In rare circumstances, it is useful to know or use the actual text of a tag. The following functions can
be used with C-Bus Tags:

GetCBusNetworkCount Function
GetCBusNetworkFromIndex Function
GetCBusNetworkAddress Function
GetCBusNetworkTag Procedure
GetCBusApplicationCount Function
GetCBusApplicationFromIndex Function
GetCBusApplicationAddress Function
GetCBusApplicationTag Procedure
GetCBusGroupCount Function
GetCBusGroupFromIndex Function
GetCBusGroupAddress Function
GetCBusGroupTag Procedure
GetCBusLevelCount Function
GetCBusLevelFromIndex Function
GetCBusLevelAddress Function
GetCBusLevelTag Procedure

 If you are considering using these functions, be sure that they are really needed and
that there is not an alternative method you can use. These use considerable processor time
and should be used sparingly. It is recommended that they only be used in the Initialisation
section if possible.

4.15.36.1 GetCBusNetworkCount Function

The GetCBusNetworkCount function returns the number of C-Bus Networks.

Applicability

Colour C-Touch only.

Syntax

GetCBusNetworkCount

Description

This function returns the number of C-Bus networks in the project.

Example

See GetCBusNetworkTag Example

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 91

4.15.36.2 GetCBusNetworkFromIndex Function

The GetCBusNetworkFromIndex function returns the number/address of a C-Bus Network.

Applicability

Colour C-Touch only.

Syntax

GetCBusNetworkFromIndex(index)

Where index is an integer from 0 to the number of networks - 1 (see GetCBusNetworkCount).

Description

This function returns the number/address of network from its index in the list of C-Bus Networks.
Note that the list of C-Bus Networks is not sorted.

Example

See GetCBusNetworkTag Example

4.15.36.3 GetCBusNetworkAddress Function

The GetCBusNetworkAddress function returns the number/address of a C-Bus Network from its
name (Tag).

Syntax

GetCBusNetworkAddress(Name)

Where Name is a String variable or a C-Bus Network Tag

Description

This function returns the number/address of network from its name (Tag). If the tag name does not
exist, the function result will be -1.

If the Name parameter is a string, then the name is looked up in the C-Bus Tag Database each time
the function is executed. This is relatively demanding on processor time. This is only possible in
Colour C-Touch.

If the Name parameter is a Network Tag, then the name is looked up in the C-Bus Tag Database at
compile time only. This is not at all demanding on processor time.

Example

To get the number of a network called "Local" (at compile time) and store it in variable n:

n := GetCBusNetworkAddress("Local");

To get the number of a network which is stored in a variable NetName and store it in variable n:

n := GetCBusNetworkAddress(NetName);

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 92

4.15.36.4 GetCBusNetworkTag Procedure

The GetCBusNetworkTag procedure returns the name (Tag) of a C-Bus Network.

Applicability

Colour C-Touch only.

Syntax

GetCBusNetworkTag(Address, Name);

Where:
Address is an integer; the Network address/number.
Name is a String variable

Description

This procedure gets the name (Tag) of a network from its address/number and stores it in the Name
variable.

Example

To display a list of all networks in the project:

Count := GetCBusNetworkCount;
WriteLn(Count, ' Networks');
for i := 1 to Count do
begin
 Net := GetCBusNetworkFromIndex(i);
 GetCBusNetworkTag(Net, NetName);
 WriteLn(i, Net, ' ', NetName);
end;

4.15.36.5 GetCBusApplicationCount Function

The GetCBusApplicationCount function returns the number of C-Bus Applications.

Applicability

Colour C-Touch only.

Syntax

GetCBusApplicationCount

Description

This function returns the number of C-Bus Applications in the project.

Example

See GetCBusApplicationTag Example

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 93

4.15.36.6 GetCBusApplicationFromIndex Function

The GetCBusApplicationFromIndex function returns the number/address of a C-Bus Application.

Applicability

Colour C-Touch only.

Syntax

GetCBusApplicationFromIndex(index)

Where index is an integer from 0 to the number of Applications - 1 (see GetCBusApplicationCount
Function).

Description

This function returns the number/address of Application from its index in the list of C-Bus
Applications. Note that the list of C-Bus Applications is not sorted.

Example

See GetCBusApplicationTag Example

4.15.36.7 GetCBusApplicationAddress Function

The GetCBusApplicationAddress function returns the number/address of a C-Bus Application from
its name (Tag).

Syntax

GetCBusApplicationAddress(Name)

Where Name is a String variable or a C-Bus Application Tag

Description

This function returns the number/address of Application from its name (Tag). If the tag name does
not exist, the function result will be -1.

If the Name parameter is a string, then the name is looked up in the C-Bus Tag Database each time
the function is executed. This is relatively demanding on processor time. This is only possible in
Colour C-Touch.

If the Name parameter is an Application Tag, then the name is looked up in the C-Bus Tag Database
at compile time only. This is not at all demanding on processor time.

Example

To get the number of a Application called "Lighting" (at compile time) and store it in variable n:

n := GetCBusApplicationAddress("Lighting");

To get the number of a Application which is stored in a variable AppName and store it in variable n:

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 94

n := GetCBusApplicationAddress(AppName);

4.15.36.8 GetCBusApplicationTag Procedure

The GetCBusApplicationTag procedure returns the name (Tag) of a C-Bus Application.

Applicability

Colour C-Touch only.

Syntax

GetCBusApplicationTag(Address, Name);

Where:
Address is an integer; the Application address/number.
Name is a String variable

Description

This procedure gets the name (Tag) of a Application from its address/number and stores it in the
Name variable.

Example

To display a list of all Applications in the project:

Count := GetCBusApplicationCount;
WriteLn(Count, ' Applications');
for i := 1 to Count do
begin
 App := GetCBusApplicationFromIndex(i);
 GetCBusApplicationTag(App, AppName);
 WriteLn(i, App, ' ', AppName);
end;

4.15.36.9 GetCBusGroupCount Function

The GetCBusGroupCount function returns the number of C-Bus Groups.

Applicability

Colour C-Touch only.

Syntax

GetCBusGroupCount(Network, Application)

Where
Network is an Integer or Network Tag.
Application is an Integer or Application Tag.

Description

This function returns the number of C-Bus Groups in the Network and Application.

Example

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 95

See GetCBusGroupTag Example

4.15.36.10GetCBusGroupFromIndex Function

The GetCBusGroupFromIndex function returns the number/address of a C-Bus Group.

Applicability

Colour C-Touch only.

Syntax

GetCBusGroupFromIndex(Network, Application, index)

Where
Network is an Integer or Network Tag.
Application is an Integer or Application Tag.
index is an integer from 0 to the number of Groups - 1 (see GetCBusGroupCount Function).

Description

This function returns the number/address of Group from its index in the list of C-Bus Groups. Note
that the list of C-Bus Groups is not sorted.

Example

See GetCBusGroupTag Example

4.15.36.11GetCBusGroupAddress Function

The GetCBusGroupAddress function returns the number/address of a C-Bus Group from its name
(Tag).

Syntax

GetCBusGroupAddress(Network, Application, Name)

Where
Network is an Integer or Network Tag.
Application is an Integer or Application Tag.
Name is a String variable or a Group Address Tag

Description

This function returns the number/address of a Group from its name (Tag). If the tag name does not
exist, the function result will be -1.

If the Name parameter is a string, then the name is looked up in the C-Bus Tag Database each time
the function is executed. This is relatively demanding on processor time. This is only possible in
Colour C-Touch.

If the Name parameter is a Group Address Tag, then the name is looked up in the C-Bus Tag
Database at compile time only. This is not at all demanding on processor time.

Example

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 96

To get the number of a Group called "Kitchen" (at compile time) which is on the "Local" network and
"Lighting" application, and store it in variable n:

n := GetCBusGroupAddress("Local", "Lighting", "Kitchen");

To get the number of a Group which is stored in a variable GroupName which is on the "Local"
network and "Lighting" application, and store it in variable n:

n := GetCBusGroupAddress("Local", "Lighting", GroupName);

4.15.36.12GetCBusGroupTag Procedure

The GetCBusGroupTag procedure returns the name (Tag) of a C-Bus Group.

Applicability

Colour C-Touch only.

Syntax

GetCBusGroupTag(Network, Application, Address, Name);

Where:
Network is an Integer or Network Tag.
Application is an Integer or Application Tag.
Address is an integer; the Group address/number.
Name is a String variable

Description

This procedure gets the name (Tag) of a Group from its address/number and stores it in the Name
variable.

Example

To display a list of all Groups in the "Local" network and "Lighting" application:

Count := GetCBusGroupCount("Local", "Lighting");
WriteLn(Count, ' Lighting Groups');
for i := 1 to Count do
begin
 Group := GetCBusGroupFromIndex("Local", "Lighting", i);
 GetCBusGroupTag("Local", "Lighting", Group, GroupName);
 WriteLn(i, Group, ' ', GroupName);
end;

4.15.36.13GetCBusLevelCount Function

The GetCBusLevelCount function returns the number of C-Bus Levels.

Applicability

Colour C-Touch only.

Syntax

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 97

GetCBusGroupCount(Network, Application, GroupAddress)

Where
Network is an Integer or Network Tag.
Application is an Integer or Application Tag.
GroupAddress is an Integer or Group Address Tag.

Description

This function returns the number of C-Bus Levels in the Group Address.

Example

See GetCBusLevelTag Example

4.15.36.14GetCBusLevelFromIndex Function

The GetCBusLevelFromIndex function returns the number/address of a C-Bus Level.

Applicability

Colour C-Touch only.

Syntax

GetCBusLevelFromIndex(Network, Application, GroupAddress, index)

Where
Network is an Integer or Network Tag.
Application is an Integer or Application Tag.
GroupAddress is an Integer or Group Address Tag.
index is an integer from 0 to the number of Levels - 1 (see GetCBusLevelCount Function).

Description

This function returns the number/address of Level from its index in the list of C-Bus Levels. Note that
the list of C-Bus Levels is not sorted.

Example

See GetCBusLevelTag Example

4.15.36.15GetCBusLevelAddress Function

The GetCBusLevelAddress function returns the number/address of a C-Bus Level from its name
(Tag).

Syntax

GetCBusLevelAddress(Network, Application, GroupAddress, Name)

Where
Network is an Integer or Network Tag.
Application is an Integer or Application Tag.
GroupAddress is an Integer or Group Address Tag.
Name is a String variable or a Level Tag

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 98

Description

This function returns the number/address of a Level from its name (Tag). If the tag name does not
exist, the function result will be -1.

If the Name parameter is a string, then the name is looked up in the C-Bus Tag Database each time
the function is executed. This is relatively demanding on processor time. This is only possible in
Colour C-Touch.

If the Name parameter is a Level Tag, then the name is looked up in the C-Bus Tag Database at
compile time only. This is not at all demanding on processor time.

Example

To get the number of a Level called "Preset" (at compile time) which is on the "Local" network,
"Lighting" application, "Kitchen" group, and store it in variable n:

n := GetCBusLevelAddress("Local", "Lighting", "Kitchen", "Preset");

To get the number of a Level which is stored in a variable LevelName which is on the "Local"
network, "Lighting" application, "Kitchen" group, and store it in variable n:

n := GetCBusLevelAddress("Local", "Lighting", "Kitchen", LevelName);

4.15.36.16GetCBusLevelTag Procedure

The GetCBusLevelTag procedure returns the name (Tag) of a C-Bus Level.

Applicability

Colour C-Touch only.

Syntax

GetCBusLevelTag(Network, Application, GroupAddress, Address, Name);

Where:
Network is an Integer or Network Tag.
Application is an Integer or Application Tag.
GroupAddress is an Integer or Group Address Tag.
Address is an integer; the Level address/number.
Name is a String variable

Description

This procedure gets the name (Tag) of a Level from its address/number and stores it in the Name
variable.

Example

To display a list of all Levels (Action Selectors) in the "Local" network, "Trigger" application,
"Scenes" group:

Count := GetCBusLevelCount("Local", "Trigger Control", "Scenes");
WriteLn(Count, ' Levels in Scenes');
for i := 1 to Count do

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 99

begin
 Level := GetCBusLevelFromIndex("Local", "Trigger Control", "Scenes", i -
1);
 GetCBusLevelTag("Local", "Trigger Control", "Scenes", Level, LevelName);
 WriteLn(i, Level, ' ', LevelName);
end;

4.15.37 Tutorial 4

Question 1

Write a Once Statement to set C-Bus Lighting Group Address "Porch Light" on at sunset + 1/2 hour
every week night (Monday to Friday).

Question 2

Write a Once statement to set the scene "Party" at 7PM on the first Friday of each month.

Question 3

Write a statement to assign the current time plus two hours to a variable called "OffTime".

Question 4

Write a statement to increment (ie. add one to) a variable called Counter every 20 seconds. Do the
same for every 45 seconds (this has less alternative solutions).

Question 5

Write a statement to nudge a Scene called "Living Area" up by 10% when a Trigger Group called
"Nudge Up" is set to 100%.

Tutorial Answers

4.16 Timer Functions

The Logic Engine has timers that can be used for determining the amount of time that has elapsed
since some event. Each timer is either disabled or running. The timers which are running have their
value incremented automatically every second.

There are several functions which can be used with timers :
TimerRunning Function
TimerSet Procedure
TimerStart Procedure
TimerStop Procedure
TimerTime Function

Notes

The value of a Logic Timer can be displayed with a Clock component.

Counters count upwards (not down).

If a timer value is -1, this means that the timer is not running. Once it gets set to 0, it will start
counting upwards automatically.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 100

For the PAC, the maximum timer value is 9 hours (32767 seconds). If a timer is allowed to count
beyond this time, it will roll over to -9 hours then continue counting upwards.

See also Time Functions and Software Limits.

4.16.1 TimerRunning Function

The TimerRunning function returns whether the specified Logic Timer is running or not.

Syntax

TimerRunning(n)

Description

The boolean result is whether timer number n is running or not.

Example

To perform an action if Timer 2 is running :
if TimerRunning(2) then ...

4.16.2 TimerSet Procedure

The TimerSet procedure sets a Logic Timer to a particular value.

Syntax

TimerSet(n, t)

Description

This sets the value of timer number n to a value of t. If the timer is not already running, this will start
the timer.

Example

To set Timer 2 to 10 seconds :
TimerSet(2, 10);

To set Timer 2 to 0 seconds - this is the same as TimerStart(2) :
TimerSet(2, 0);

To set Timer n to -1 seconds - this is the same as TimerStop(n) :
TimerSet(n, -1);

4.16.3 TimerStart Procedure

The TimerStart procedure starts a Logic Timer.

Syntax

TimerStart(n);

Description

This starts timer number n running. The time will be set to 0. If the timer is already running, it will

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 101

just set the time to 0.

Example

To start Timer 2 :
TimerStart(2);

4.16.4 TimerStop Procedure

The TimerStop procedure stops a Logic Timer.

Syntax

TimerStop(n);

Description

This stops timer number n running. The time will be set to -1.

Example

To stop Timer 2 :
TimerStop(2);

4.16.5 TimerTime Function

The TimerTime function returns the time of a specified Logic Timer.

Syntax

TimerTime(n)

Description

The integer result is the value of Logic Timer number n. If the result is -1, then the timer is not
running. The Timer Time becomes 1 greater each second while the Timer is running.

Example

To perform an action if the value of Timer 2 is 60 seconds :
if TimerTime(2) = 60 then ...

To display the value of timer 3 on the screen :
TextPos(100, 100);

DrawText('Time = ', TimerTime(3));

To display the value of timer 3 on the screen, as a value counting down from 60 seconds :
TextPos(100, 100);

DrawText('Time = ', 60 - TimerTime(3));

4.17 System IO Functions

System Input/Output (IO) Variables are provided for additional system control and interaction with
the logic engine. There are two types of System IO Variables :

In-Built System IO Variables : these are pre-defined and provide access to various system
functions
User System IO Variables : these are defined by the user as required

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 102

User System IO variables can be Integer, Real, Boolean or Strings.

4.17.1 Using SystemIO Variables with Components

A PICED component (such as a button or slider) can control or monitor the state of a System IO
variable. To get a Component to control or monitor a System IO variable :

Place a Component on a Page
Edit the Component
Click on the System IO tab
Select the Key Function
Select whether a User or In-Built System IO Variable is required
Select the System IO Variable from the list
Select the Value if applicable

To copy the User System IO Variable from one Component to another :
Select the component to have its System IO Variable copied
Select the other components to have the System IO Variable copied to
Select the Edit | Copy Group menu item

4.17.2 User System IO Variables

User System IO (Input / Output) Variables are used to provide a means of user input and output to
the Logic Engine. Components can be placed on the PICED page to allow the user to set or read the
User System IO variable value.

The values of User System IO variables are saved when the project is saved. This provides a means
of achieving non-volatile storage for the Logic Engine. The present value of the User System IO
variables can be seen and set with the System IO Editor. These values also get changed by
Components and logic functions.

The System IO Editor can be used to create and edit User System IO variables.

The following functions can be used with User System IO variables :
GetBoolSystemIO Function
GetIntSystemIO Function
GetRealSystemIO Function
GetStringSystemIO Procedure
SetBoolSystemIO Procedure
SetIntSystemIO Procedure
SetRealSystemIO Procedure
SetStringSystemIO Procedure

Note : the differences between a User System IO Variable and a regular Logic Variable are :
the user can not directly monitor or control a regular variable.
with User System IO variables, the "get" and "set" functions must be used to access them
the values of User System IO variables are not initialised when the Logic Engine runs (they stay at
their previous value). The values can be reset in the logic Initialisation section if required.
the values of User System IO variables are saved when the Project is saved

A User System IO Variable should not be used where a regular Logic variable will suffice. There are
several problems with using a System IO variable instead of a regular variable :

User System IO variables slow down the logic execution
User System IO variables use more resources
User System IO variables make larger project files
There are a limited number of User System IO variables available

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 103

A User System IO Variable should be used when :
the value needs to be restored following a power failure
the user needs to be able to control the value easily

See also Software Limits.

4.17.2.1 System IO Manager

The System IO Manager is used to :
Add new System IO Variables
Edit System IO Variables
Change System IO Variable values

To open the System IO Manager, click on the System IO button on the Logic Editor Tool Bar, or on
the PICED tool bar.

To Add a new System IO variable, click on the Add button. The System IO Variable Editor will
open.

To delete an existing System IO variable, select the System IO variable and click on the Delete
button.

To edit an existing System IO variable, select the System IO variable and click on the Edit button.
The System IO Variable Editor will open.

To make a copy of an existing System IO variable, select the System IO variable and click on the
Duplicate button.

Note : Special Functions can also be used to allow the user to open the System IO Manager or to
open a particular System IO Variable.

See also Software Limits.

4.17.2.1.1 System IO Variable Editor

The System IO Variable Editor can be accessed from the System IO Manager or by using Special
Functions.

The System IO Variable Editor allows the properties of a System IO Variable to be set :
Name : this is the name of the System IO Variable
Type : this is the Type of the System IO Variable (note that dates and times are just Integers)
Minimum : this is the minimum value that the System IO Variable can have (not applicable for
Boolean Types or String Types)
Maximum : this is the maximum value that the System IO Variable can have (not applicable for
Boolean Types or String Types)
Value : this is the current value of the System IO Variable

4.17.2.2 System IO Tags

A System IO Tag is a Tag used to refer to a System IO Variable number. The tag corresponds to the
System IO Variable name.

The format is :
"System IO Variable Name"

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 104

4.17.2.3 GetBoolSystemIO Function

The GetBoolSystemIO function returns the value of a Boolean System IO variable.

Syntax

GetBoolSystemIO(n)

n is an Integer or System IO Variable System IO Tag.

Description

The boolean result is the value of System IO variable number n. If System IO variable number n is
not of the correct type, a Compilation Error or Run Time Error will occur. Note that the index of the
first System IO Variable is 0, not 1.

Example

To assign the value of System IO variable number 2 to a variable called State :
State := GetBoolSystemIO(2);

To perform an action if the value of System IO variable called "Enable State" is true :
if GetBoolSystemIO("Enable State") then ...

4.17.2.4 GetIntSystemIO Function

The GetIntSystemIO function returns the value of an integer System IO variable.

Syntax

GetIntSystemIO(n)

n is an Integer or System IO Variable System IO Tag.

Description

The integer result is the value of System IO variable number n. This can also be used to get the
value of a Date or Time System IO variable, since dates and times are just integers. If System IO
variable number n is not of the correct type, a Compilation Error or Run Time Error will occur. Note
that the index of the first System IO Variable is 0, not 1.

Example

To assign the value of System IO variable number 2 to a variable called Date1 :
Date1 := GetIntSystemIO(2);

To perform an action if the value of System IO variable called "Start Time" is equal to the current
time :

if GetIntSystemIO("Start Time") = Time then ...

4.17.2.5 GetRealSystemIO Function

The GetRealSystemIO function returns the value of a Real System IO variable.

Syntax

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 105

GetRealSystemIO(n)

n is an Integer or System IO Variable System IO Tag.

Description

The real result is the value of System IO variable number n. If System IO variable number n is not of
the correct type, a Compilation Error or Run Time Error will occur. Note that the index of the first
System IO Variable is 0, not 1.

Example

To assign the value of System IO variable number 2 to a variable called x :
x := GetRealSystemIO(2);

To perform an action if the value of System IO variable called "Setting" is equal to a variable called x
:

if GetRealSystemIO("Setting") = x then ...

4.17.2.6 GetStringSystemIO Procedure

The GetStringSystemIO procedure obtains the value of an String System IO variable.

Syntax

GetStringSystemIO(n, v);

n is an Integer or System IO Variable System IO Tag.
v is a string variable

Description

The value of System IO variable number n is stored in v. If System IO variable number n is not of the
correct type, a Compilation Error or Run Time Error will occur. Note that the index of the first System
IO Variable is 0, not 1.

Example

To store the value of System IO variable number 2 in variable s :
GetStringSystemIO(2, s);

To store the value of System IO variable called "Alarm State" in variable State :
GetStringSystemIO("Alarm State", State);

To compare a system IO variable called "My String" with the text 'kitchen' (using string variable
called s) :

GetStringSystemIO("My String", s);

if s = 'kitchen' then ...

4.17.2.7 SetBoolSystemIO Procedure

The SetBoolSystemIO procedure sets the value of an boolean System IO variable.

Syntax

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 106

SetBoolSystemIO(n, v);

n is an Integer or System IO Variable System IO Tag.
v is a boolean expression

Description

The value of System IO variable number n is set to v. If System IO variable number n is not of the
correct type, a Compilation Error or Run Time Error will occur. Note that the index of the first System
IO Variable is 0, not 1.

Example

To set the value of System IO variable number 2 to TRUE :
SetBoolSystemIO(2, true);

To set the value of System IO variable called "Enable State" to ON (TRUE) :
SetBoolSystemIO("Enable State", ON);

4.17.2.8 SetIntSystemIO Procedure

The SetIntSystemIO procedure sets the value of an integer System IO variable.

Syntax

SetIntSystemIO(n, v);

n is an Integer or System IO Variable System IO Tag.
v is an integer expression

Description

The value of System IO variable number n is set to v. This can also be used to set the value of a
Date or Time System IO variable, since dates and times are just integers. If System IO variable
number n is not of the correct type, a Compilation Error or Run Time Error will occur. Note that the
index of the first System IO Variable is 0, not 1.

Example

To set the value of System IO variable number 2 to 5 :
SetIntSystemIO(2, 5);

To set the value of System IO variable called "Start Time" to 46800 (1PM) :
SetIntSystemIO("Start Time", "1:00 PM");

4.17.2.9 SetRealSystemIO Procedure

The SetRealSystemIO procedure sets the value of an real System IO variable.

Syntax

SetRealSystemIO(n, v);

n is an Integer or System IO Variable System IO Tag.
v is a real expression

Description

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 107

The value of System IO variable number n is set to v. If System IO variable number n is not of the
correct type, a Compilation Error or Run Time Error will occur. Note that the index of the first System
IO Variable is 0, not 1.

Example

To set the value of System IO variable number 2 to 1.23 :
SetRealSystemIO(2, 1.23);

To set the value of System IO variable called "Setting" to the value of variable x :
SetRealSystemIO("Setting", x);

4.17.2.10 SetStringSystemIO Procedure

The SetStringSystemIO procedure sets the value of an String System IO variable.

Syntax

SetStringSystemIO(n, v);

n is an Integer or System IO Variable System IO Tag.
v is a string expression

Description

The value of System IO variable number n is set to v. If System IO variable number n is not of the
correct type, a Compilation Error or Run Time Error will occur. Note that the index of the first System
IO Variable is 0, not 1.

Example

To set the value of System IO variable number 2 to 'stop' :
SetStringSystemIO(2, 'stop');

To set the value of System IO variable called "Alarm State" to 'Armed' :
SetStringSystemIO("Alarm State", 'Armed');

4.17.3 In-Built System IO Variables

In-built System Input/Output (IO) Variables provide access to system functions like :
Scenes
Schedules
Irrigation
Other C-Bus Applications (Measurement, Security, Telephony, HVAC etc)

For a full list of In-Built System IO Variables, their functions and their values, refer to the main help
file.

The easiest way to use the In-built System IO variables in logic is:
Click in the Code Window
Right click to show the pop-up menu
Select System IO
Select either Set IB System IO or Get IB System IO
Select the desired variable and its properties
Click on OK

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 108

Below is a table showing the list of In-Built System IO Variables, their type, whether they can be set
and their parameters. Note that although logic has access to all In-built System IO Variables, it
is not necessarily sensible to use some of them from logic.

Name Type Settable
?

Parameters

Access Level Name String no None
Access Level Integer1 no None

Access Logged In Boolean no None
Access Password String no None
Access User Name String no None
Alarm Sounding Boolean yes None
Alarm, Cancel Next Boolean yes None
Audio Balance Integer yes Matrix Switcher, Zone
Audio Bass Integer yes Matrix Switcher, Zone
Audio High Priority Boolean yes Matrix Switcher, Source, Level
Audio Last Error Code Integer no Matrix Switcher, Zone
Audio Mute Boolean yes Matrix Switcher, Zone
Audio Timer Integer yes Matrix Switcher, Zone
Audio Treble Integer yes Matrix Switcher, Zone
Audio Volume Integer yes Matrix Switcher, Zone
Audio Zone Source Integer1 yes Matrix Switcher, Zone

C-Bus State Boolean no None
Date to be set Date (Integer) yes None
Daylight Savings Boolean no None
E-Mail Account Count Integer no None
E-Mail Account Name String no None
E-Mail Account Number Integer1 yes None
E-Mail Count Integer no Account Number0

E-Mail Message Body String no None
E-Mail Message Count Integer no None
E-Mail Message Number Integer1 no None
E-Mail Message Present Boolean no None
E-Mail Message Sender String no None
E-Mail Message Subject String no None
E-Mail Present Boolean no Account Number0

Energy Tariff Real yes Tariff number0

Error App Project Most Recent Error
Name

String no None

Error App Project Most Recent Error
Severity

Integer no None

Error App Project Most Recent Error
Status

Boolean no None

Error App Project Most Severe Error
Name

String no None

Error App Project Most Severe Error
Severity

Integer no None

Error App Project Most Severe Error
Status

Boolean no None

Error App Network Most Recent
Error Name

String no Network Number

Error App Network Most Recent
Error Severity

Integer no Network Number

Error App Network Most Recent
Error Status

Boolean no Network Number

Error App Network Most Severe
Error Name

String no Network Number

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 109

Error App Network Most Severe
Error Severity

Integer no Network Number

Error App Network Most Severe
Error Status

Boolean no Network Number

Error App Unit Most Recent Error
Name

String no Network Number, Category, Unit
Number

Error App Unit Most Recent Error
Severity

Integer no Network Number, Category, Unit
Number

Error App Unit Most Recent Error
Status

Boolean no Network Number, Category, Unit
Number

Error App Unit Most Severe Error
Name

String no Network Number, Category, Unit
Number

Error App Unit Most Severe Error
Severity

Integer no Network Number, Category, Unit
Number

Error App Unit Most Severe Error
Status

Boolean no Network Number, Category, Unit
Number

HVAC Data Valid Boolean no Zone Group, Zone Numbers2

HVAC Error Number Integer no Zone Group, Zone Numbers2

HVAC Error Name String no Zone Group, Zone Numbers2

HVAC Error State Boolean no Zone Group, Zone Numbers2

HVAC Fan Speed Integer yes Zone Group, Zone Numbers2

HVAC Fan Speed Text String no Zone Group, Zone Numbers2

HVAC Mode Integer yes Zone Group, Zone Numbers2

HVAC Mode Name String no Zone Group, Zone Numbers2

HVAC Operating Type Integer yes Zone Group, Zone Numbers2

HVAC Operating Type Name String no Zone Group, Zone Numbers2

HVAC Plant Busy Boolean no Zone Group, Zone Numbers2

HVAC Plant Cooling Boolean no Zone Group, Zone Numbers2

HVAC Plant Equipment Integer no Zone Group, Zone Numbers2

HVAC Plant Equipment Name String no Zone Group, Zone Numbers2

HVAC Plant Fan Boolean no Zone Group, Zone Numbers2

HVAC Plant Heating Boolean no Zone Group, Zone Numbers2

HVAC Sensor Status Integer no Zone Group, Zone Numbers2

HVAC Sensor Status Name String no Zone Group, Zone Numbers2

HVAC Set-Level Real yes Zone Group, Zone Numbers2

HVAC Set-Level Text String no Zone Group, Zone Numbers2

HVAC Set-Level Type Integer no Zone Group, Zone Numbers2

HVAC Set-Level Type Name String no Zone Group, Zone Numbers2

HVAC Setback Enabled Boolean yes Zone Group, Zone Numbers2

HVAC Temperature Real no Zone Group, Zone Numbers2

HVAC Zone Damper Open Boolean no Zone Group, Zone Numbers2

HVAC Zone Enabled Boolean yes Zone Group, Zone Numbers2

HVAC Zone Group State Boolean yes Zone Group
Irrigation Program Count Integer no None
Irrigation Program Name String no None
Irrigation Program Number Integer1 yes None
Irrigation Running Zone Name String no None
Irrigation Running Boolean no None
Irrigation Time Remaining Time (Integer) no None
Irrigation Zone Duration Time (Integer) yes Offset from selected zone. Leave as

0.
Irrigation Zone Count Integer no None
Irrigation Zone Name String no None
Irrigation Zone Number Integer1 yes None
Irrigation Zone Running Boolean no Offset from selected zone. Leave as

0.
Label Action Selector Text String yes Network, Application, Group, Action

Selector, Variant0

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 110

Label Group Text String yes Network, Application, Group, Variant0

Label Language Name String no None
Label Language Integer yes None
Load Monitor Load Power Real no Network, Application, Group
Load Monitor Total Power Real no None
Logic Module Enabled Boolean yes Module Number0

Logic Running Boolean no None
Logic Timer Time Time (Integer) no Timer Number
Master Unit Boolean yes None
Measurement App Boolean Value Boolean yes Network, Device Id, Channel0

Measurement App Energy Value Real yes Network, Device Id, Channel0, Period
Type, Period Quantity, Offset, Unit
Type, Data Type

Measurement App Integer Value Integer yes Network, Device Id, Channel0

Measurement App Power Maximum Real no Network, Device Id, Channel0, Period
Type, Period Quantity, Offset, Unit
Type

Measurement App Power Value Real yes Network, Device Id, Channel0, Unit
Type

Measurement App Real Value Real yes Network, Device Id, Channel0

Measurement App Valid Value Boolean no Network, Device Id, Channel0

Media Transport Control Category Integer yes Media Link Group, Offset3

Media Transport Control Category
Name

String yes Media Link Group

Media Transport Control Fast
Forward

Integer yes Media Link Group

Media Transport Control Pause Boolean yes Media Link Group
Media Transport Control Play Boolean yes Media Link Group
Media Transport Control Power Boolean yes Media Link Group
Media Transport Control Repeat Integer yes Media Link Group
Media Transport Control Rewind Integer yes Media Link Group
Media Transport Control Selection Integer yes Media Link Group, Offset3

Media Transport Control Selection
Name

String yes Media Link Group

Media Transport Control Shuffle Boolean yes Media Link Group
Media Transport Control Stop Boolean yes Media Link Group
Media Transport Control Track Integer yes Media Link Group, Offset3

Media Transport Control Track
Count

Integer yes Media Link Group

Media Transport Control Track
Name

String yes Media Link Group

Metric Units Boolean yes None
Monitor Value Real no Network, Unit, Parameter4

Page Name String no None
Power Meter Maximum Real no Period Type, Period Quantity, Offset,

Unit Type, Tariff
Power Meter Total Real no Unit Type, Tariff
Power Meter Total Energy Real no Period Type, Period Quantity, Offset,

Unit Type, Data Type, Tariff
Pulse Power Meter Energy Meter Number0, Period Type, Period

Quantity, Offset, Unit Type, Data Type
Pulse Power Meter Level Real no Power Meter Number0

Pulse Power Meter Maximum Real no Meter Number0, Period Type, Period
Quantity, Offset, Unit Type

Scene Component Count Integer no None
Scene Component Current Level Integer yes Offset from selected component.

Leave as 0.
Scene Component Level Integer yes Offset from selected component.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 111

Leave as 0.
Scene Component Name String no Offset from selected component.

Leave as 0.
Scene Component Number Integer1 yes None
Scene Component Ramp Rate Integer yes Offset from selected component.

Leave as 0.
Scene Component Ramp Rate Text String no Offset from selected component.

Leave as 0.
Schedule Controls C-Bus Group Boolean no None
Scene Count Integer no None
Scene Current Level Integer yes None
Schedule Has Start & End Time Boolean no None
Scene Name String no None
Scene Nudge Level Integer yes None
Scene Number Integer1 yes None
Schedule Also On Boolean yes Special Day (0 = normal, 1 = public

holiday, 2 = special day 1 etc)
Schedule Any Year Boolean yes None
Schedule Count Integer no None
Schedule Day of Month Boolean yes Day of month
Schedule Day of Month Mask Integer yes None
Schedule Day of Month Type Time (Integer) no None
Schedule Day of Week Boolean yes Day (1 = Sunday, 7 = Saturday)
Schedule Day of Week Mask Integer yes None
Schedule Day of Week Type Time (Integer) no None
Schedule Day Text String no None
Schedule Day Type Integer yes None
Schedule Enabled Boolean yes None
Schedule End Time (Integer) yes None
Schedule Event String no None
Schedule Is Last Week of Month Boolean yes None
Schedule Is Repeat Boolean yes None
Schedule Level Integer yes None
Schedule Month Boolean yes Month (1 = January, 12 = December)
Schedule Month Mask Integer yes None
Schedule Name String no None
Schedule Next Due Time (Integer) no None
Schedule Not On Boolean yes Special Day (0 = normal, 1 = public

holiday, 2 = special day 1 etc)
Schedule Number Integer1 yes None
Schedule Pulse Duration Time (Integer) yes None
Schedule Repeat Due Date (Integer) yes None
Schedule Repeat Interval Integer yes None
Schedule Start Time (Integer) yes None
Schedule Time Time (Integer) yes None
Schedule Time Text String no None
Schedule Time Type Time (Integer) no None
Schedule Year Integer yes None
Security Alarm Sounding Boolean no None
Security All Zones Secure Boolean no None
Security Arm Failed Boolean no None
Security Arm Ready Boolean no None
Security Armed Level Name String no None
Security Armed Level Integer no None
Security Armed State Boolean no None
Security Battery Charging Boolean no None
Security Entry Delay Boolean no None
Security Exit Delay Boolean no None
Security Fire Alarm Sounding Boolean no None
Security Gas Alarm Sounding Boolean no None

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 112

Security Line Cut Alarm Sounding Boolean no None
Security Low Battery Boolean no None
Security Mains Failure Boolean no None
Security Normal Operation Boolean no None
Security Other Alarm Sounding Boolean no None
Security Panic Boolean no None
Security Password OK Boolean no None
Security Password Status Name String no None
Security Password Status Integer no None
Security Tamper Boolean no None
Security Zone Isolated Boolean no Zone number0

Security Zone Name String no Zone number0

Security Zone Secure Boolean no Zone number0

Security Zone Status Name String no Zone number0

Security Zone Status Integer no Zone number0

Special Day Type String no None
System Free Memory Real no None
System Processor Usage Real no None
Telephony Dial In Fail Reason NameString no None
Telephony Dial In Fail Reason Integer no None
Telephony Dial Out Fail Reason
Name

String no None

Telephony Dial Out Fail Reason Integer no None
Telephony Diverted Number String no None
Telephony Diverted Boolean no None
Telephony Last Incoming Number String no None
Telephony Last Outgoing Number String no None
Telephony Off Hook Number String no None
Telephony Off Hook Reason Name String no None
Telephony Off Hook Reason Integer no None
Telephony Off Hook Boolean no None
Telephony Ringing Number String no None
Telephony Ringing Boolean no None
Telephony Secondary Isolated Boolean no None
Time to be set Time (Integer) yes None
Time-out Page Integer yes None

Notes

0 parameters which are Zero Based start from 0, not 1. So for example, the first Module number is 0,
not 1. When possible, use Tags to avoid errors.
1 All other values are one based. So, for example, to select the first Schedule, set the Schedule
Number to 1.
2 HVAC Zones are a "bit mask". See Controlling HVAC
3 An offset of 0 is the current Category, selection or track. Offset of 1 is the next one, and offset of 2
is the one after that. The names can only be set if the Media Link Group has the server property set.
4 The parameter types are listed in GetUnitParameter Function

The following functions can be used with User System IO variables :
GetBoolIBSystemIO Function
GetIntIBSystemIO Function
GetRealIBSystemIO Function
GetStringIBSystemIO Procedure
SetBoolIBSystemIO Procedure
SetIntIBSystemIO Procedure
SetRealIBSystemIO Procedure
SetStringIBSystemIO Procedure

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 113

See also Controlling HVAC

4.17.3.1 System IOTags

An In-Built System IO Tag is a Tag used to refer to an In-Built System IO Variable number. The tag
corresponds to the In-Built System IO Variable name.

The format is :
"System IO Variable Name"

In-Built System IO variables can only be referred to by their tags, not by their number.

Where an in-built system IO procedure or function refers to a C-Bus Network, Application, Group
Address or Level/Action Selector, a C-Bus tag can be used.

I addition, there are tags for use with Pulse Power Meters and Energy Tariffs.

4.17.3.2 GetBoolIBSystemIO Function

The GetBoolIBSystemIO function returns the value of a Boolean In-Built System IO Variable.

Syntax

GetBoolIBSystemIO(name [, parameter1] [, parameter2] [, parameter3])

name is an In-Built System IO Variable Tag.
parameter1, parameter2 and parameter3 are optional integer parameters which depend on the
selected In-Built System IO Variable.

Description

The boolean result is the value of the selected In-Built System IO Variable. Refer to the main help file
for details of what the In-built System IO variables do.

Examples

To assign the value of In-Built System IO variable called "Access Logged In" to a variable called
State :

State := GetBoolIBSystemIO("Access Logged In");

To perform an action if someone is currently logged in :
if GetBoolIBSystemIO("Access Logged In") then ...

Other boolean System IO variable examples :

Network 50 has an error reported on it :
GetBoolIBSystemIO("Error App Network Error", 50);

Network 50, unit 23 (category 884) has an error reported on it :
GetBoolIBSystemIO("Error App Unit Error", 50, 884, 23)

The data for HVAC Zone Group 1, Zone 2 is valid :
GetBoolIBSystemIO("HVAC Data Valid", 1, HVACZone2)

HVAC Zone Group 1 in on :
GetBoolIBSystemIO("HVAC Zone Group State", 1)

The currently selected irrigation zone running :
GetBoolIBSystemIO("Irrigation Zone Running", 0)

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 114

The second logic module is enabled (note Zero Based) :
GetBoolIBSystemIO("Logic Module Enabled", 1)

Security Zone 4 is secure :
GetBoolIBSystemIO("Security Zone Secure", 4)

See also Measurement Application System IO

4.17.3.3 GetIntIBSystemIO Function

The GetIntIBSystemIO function returns the value of an Integer In-Built System IO Variable.

Syntax

GetIntIBSystemIO(name [, parameter1] [, parameter2] [, parameter3])

name is an In-Built System IO Variable Tag.
parameter1, parameter2 and parameter3 are optional integer parameters which depend on the
selected In-Built System IO Variable.

Description

The integer result is the value of the selected In-Built System IO Variable. Refer to the main help file
for details of what the In-built System IO variables do.

Examples

To assign the value of In-Built System IO variable called "Access Level" to a variable called
CurrentLevel :

CurrentLevel := GetIntIBSystemIO("Access Level");

To perform an action if someone is currently logged in :
if GetIntIBSystemIO("Access Level") > 0 then ...

Other integer System IO variable examples :
Network 120 error severity :

GetIntIBSystemIO("Error App Network Error Severity", 120)

Network 120, unit 23 (category 884) error severity :
GetIntIBSystemIO("Error App Unit Error Severity", 120, 884, 23)

HVAC Zone Group 1, Zone 2 operational type :
GetIntIBSystemIO("HVAC Operating Type", 1, HVACZone2)

Irrigation time for the selected program and zone :
GetIntIBSystemIO("Irrigation Time", 0)

C-Bus Level for the selected scene component :
GetIntIBSystemIO("Scene Component Level", 0)

Status of Security Zone 4 :
GetIntIBSystemIO("Security Zone Status", 4)

See also Measurement Application System IO

4.17.3.4 GetRealIBSystemIO Function

The GetRealIBSystemIO function returns the value of a Real In-Built System IO Variable.

Syntax

GetRealIBSystemIO(name [, parameter1] [, parameter2] [, parameter3])

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 115

name is an In-Built System IO Variable Tag.
parameter1, parameter2 and parameter3 are optional integer parameters which depend on the
selected In-Built System IO Variable.

Description

The real result is the value of the selected In-Built System IO Variable. Refer to the main help file for
details of what the In-built System IO variables do.

Examples

To assign the value of In-Built System IO variable for the load energy for Group 1 on Application 56
(lighting) on network 254 to a variable called Energy :

Energy := GetRealIBSystemIO("Load Monitor Load Energy", 254, 56, 1);

To perform an action if the HVAC set-point level for Zone Group 1, Zone 2 is over 25C :
if GetRealIBSystemIO("HVAC Set-Level", 1, HVACZone2) > 25 then ...

To read the value of a temperature "monitor" on network 254, unit address 123 and assign it to a
variable called OutsideTemp:

OutsideTemp := GetRealIBSystemIO("Monitor Value", 254, 123, 1);

(Note that the GetUnitParameter Function function is normally used to read monitor data values.)

See also Using Power and Energy Data and Measurement Application System IO
4.17.3.5 GetStringIBSystemIO Procedure

The GetStringIBSystemIO procedure returns the value of a String In-Built System IO Variable.

Syntax

GetStringIBSystemIO(name [, parameter1] [, parameter2] [, parameter3] [,
parameter4] [, parameter5], Stringvar);

name is an In-Built System IO Variable Tag.
parameter1...parameter5 are optional integer parameters which depend on the selected In-Built
System IO Variable.
StringVar is a string variable

Description

The value of the selected In-Built System IO Variable is stored in the string variable. Refer to the
main help file for details of what the In-built System IO variables do.

Examples

String System IO variable examples :
Network 120 error severity :

GetIntIBSystemIO("Error App Network Error Severity Name", 120)

Network 120, unit 23 (category 884) error severity name :
GetIntIBSystemIO("Error App Unit Error Severity Name", 120, 884, 23)

HVAC Zone Group 1, Zone 2 operational type name :
GetIntIBSystemIO("HVAC Operating Type Name", 1, HVACZone2)

The state of measurement application network 254, unit 5, channel 2 (note Zero Based) :
GetIntIBSystemIO("Measurement App Integer Value", 254, 5, 1)

Name of the selected scene component :
GetIntIBSystemIO("Scene Component Name", 0)

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 116

Name of Security Zone 4 :
GetIntIBSystemIO("Security Zone Name", 4)

See also C-Bus Labels

4.17.3.6 SetBoolIBSystemIO Procedure

The SetBoolSystemIO procedure sets the value of a boolean In-Built System IO Variable.

Syntax

SetBoolIBSystemIO(name [, parameter1], v);

name is an In-Built System IO Variable Tag.
parameter1 is an optional integer parameter which depends on the selected In-Built System IO
Variable.
v is a boolean expression

Description

The value of the In-Built System IO Variable is set to v. Refer to the main help file for details of what
the In-built System IO variables do.

Examples

To enable the first logic module :
SetBoolIBSystemIO("Logic Module Enabled", 0, true);

See also additional examples

4.17.3.7 SetIntIBSystemIO Procedure

The SetIntSystemIO procedure sets the value of a Integer In-Built System IO Variable.

Syntax

SetIntIBSystemIO(name [, parameter1], v);

name is an In-Built System IO Variable Tag.
parameter1 is an optional integer parameter which depends on the selected In-Built System IO
Variable.
v is an integer expression

Description

The value of the In-Built System IO Variable is set to v. Refer to the main help file for details of what
the In-built System IO variables do.

Examples

To set the label language to English (Australian):
SetIntIBSystemIO("Label Language", 2);

To select the first Schedule so that it can be used:
SetIntIBSystemIO("Schedule Number", 1);

See also additional examples

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 117

4.17.3.8 SetRealIBSystemIO Procedure

The SetRealSystemIO procedure sets the value of a real In-Built System IO Variable.

Syntax

SetRealIBSystemIO(name [, parameter1], v);

name is an In-Built System IO Variable Tag.
parameter1 is an optional integer parameter which depends on the selected In-Built System IO
Variable.
v is a real expression

Description

The value of the In-Built System IO Variable is set to v. Refer to the main help file for details of what
the In-built System IO variables do.

Examples

To set the HVAC set-point level for Zone Group 1, Zone 2 to 25C :
SetRealIBSystemIO("HVAC Set-Level", 1, HVACZone2, 25);

See also additional examples and Using Power and Energy Data

4.17.3.9 SetStringIBSystemIO Procedure

The SetStringSystemIO procedure sets the value of a String In-Built System IO Variable.

Syntax

SetStringIBSystemIO(name [, parameter1] [, parameter2] [, parameter3] [,
parameter4] [, parameter5], v);

name is an In-Built System IO Variable Tag.
parameter1...parameter5 are optional integer parameters which depend on the selected In-Built
System IO Variable.
v is a string expression

Description

The value of the In-Built System IO Variable is set to v. Refer to the main help file for details of what
the In-built System IO variables do.

Examples

See additional examples

See C-Bus Labels

4.17.3.10 Controlling HVAC

When using in-built System IO variables to control the HVAC Application, the following in-built
System IO variables can be used :

HVAC Fan Speed
HVAC Mode
HVAC Operating Type

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 118

HVAC Setback Enabled
HVAC Set-Level
HVAC Zone Enabled
HVAC Zone Group State

Other in-built System IO variables can be used to monitor the state of various aspects of an HVAC
system.

For all except the last two listed above, it is possible to control than more than one zone at once. To
support this, the Zone Numbers parameter is actually a "bit mask". The values and logic constants
used to control different combinations of zones are shown below.

Unswitched Zone 1 Zone 2 Zone 3 Zone 4 Bit Mask Constant

1 HVACZoneU

2 HVACZone1

3 HVACZoneU1

4 HVACZone2

5 HVACZoneU2

6 HVACZone12

7 HVACZoneU12

8 HVACZone3

9 HVACZoneU3

10 HVACZone13

11 HVACZoneU13

12 HVACZone23

13 HVACZoneU23

14 HVACZone123

15 HVACZoneU123

16 HVACZone4

17 HVACZoneU4

18 HVACZone14

19 HVACZoneU14

20 HVACZone24

21 HVACZoneU24

22 HVACZone124

23 HVACZoneU124

24 HVACZone34

25 HVACZoneU34

26 HVACZone134

27 HVACZoneU134

28 HVACZone234

29 HVACZoneU234

30 HVACZone1234

31 HVACZoneU1234

To set the HVAC set-point level for Zone Group 1, Zone 2 to 25C :
SetRealIBSystemIO("HVAC Set-Level", 1, HVACZone2, 25);

To set the HVAC set-point level for Zone Group 2, Zone 2, 3 and 4 to 25C :
SetRealIBSystemIO("HVAC Set-Level", 2, HVACZone234, 25);

When using the value of a zone, it is only possible to get the value of one zone at a time, but the
above constants are still used.

To perform an action if the HVAC set-point level for Zone Group 1, Zone 2 is over 25C :

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 119

if GetRealIBSystemIO("HVAC Set-Level", 1, HVACZone2) > 25 then ...

If you were to get the value of a HVAC in-built System IO variable and you selected multiple zones, it
would just use the first enabled zone in the list. So, the code below would be the same as that
above :

if GetRealIBSystemIO("HVAC Set-Level", 1, HVACZone234) > 25 then ...

The HVAC Set Level value varies depending on the mode of the HVAC plant. It generally is a
temperature, but can also be a Comfort Level (if using an evaporative plant) or a fan speed (when in
fan-only mode). The type of value can be found using the HVAC Set Level Type in-built System IO
variable.

Before HVAC data is used in logic, you should check to make sure that the data is valid. There will
be a short period following start-up when the data is not yet available. For example :

if GetBoolIBSystemIO("HVAC Data Valid", 1, HVACZone2) then

begin

 if GetRealIBSystemIO("HVAC Set Level", 1, HVACZone2) > 25 then

 ...

end;

4.17.3.11 Measurement Application

There are three in-built System IO variables for the values of C-Bus Measurement Application
channels:

Measurement App Boolean Value
Measurement App Integer Value
Measurement App Real Value

Using the Channel Data

Measurement Application channels need to be created in the Measurement Application Manager
before they can be used.

The following values will be reported for system IO variables prior to a value being received via C-Bus:
Integer values: 0
Real Values: 0.0
Boolean Values: false

During this time, the "Measurement App Valid Value" In-built System IO variable will have a value of
false. The value of the channel data should be ignored during this time, as the correct value is
unknown.

Once a C-Bus message has been received containing a value for the channel, the corresponding
system IO variable will have the correct value and the "Measurement App Valid Value" will have a
value of true.

 Note that the channel numbers of the General Input Unit are Zero Based. The first channel is
actually 0, not 1.

Examples

In the following examples, a General Input Unit is assumed to be on network 254, Device Id 5.

To perform an action if the state of the first channel is on:

if GetBoolIBSystemIO("Measurement App Valid Value", 254, 5, 0) and

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 120

 GetBoolIBSystemIO("Measurement App Boolean Value", 254, 5, 0) then ...

To assign the value of the second channel to a variable called OutsideTemp:

if GetBoolIBSystemIO("Measurement App Valid Value", 254, 5, 1) then

begin

 OutsideTemp := GetRealIBSystemIO("Measurement App Real Value", 254, 5, 1);
 ...

end;

To perform an action if the value of the third channel is more than 100:

if GetBoolIBSystemIO("Measurement App Valid Value", 254, 5, 2) then

begin

 if GetIntIBSystemIO("Measurement App Integer Value", 254, 5, 2) > 100 then
...
 ...

end;

Controlling the Channel Data

Setting a Measurement App in-built System IO variable is only possible if the Controllable property is
set. In this case, the value will also be broadcast onto C-Bus. Avoid changing these too often as it
can create excessive C-Bus Traffic.

Examples

To set the value of measurement channel 0 on network 254, Device Id 20 to 100 and delay for 30
seconds:

SetIntSystemIO("Measurement App Integer Value", 254, 20, 0, 100);
delay(30);

To set the value of measurement channel 0 on network 254, Device Id 20 to the value of variable
OutsideTemp if it has changed:

if HasChanged(OutsideTemp) then

 SetIntSystemIO("Measurement App Integer Value", 254, 20, 0, OutsideTemp);

See also Using Power and Energy Data

4.17.3.12 C-Bus Labels

C-Bus Group Addresses and levels can be "labelled" to display text on a DLT switch or elsewhere.

The In-built System IO Variables which can be used for this are:
Label Group Text
Label Action Selector Text

Group Labels

To assign the label for Group Address 2 (for "Variant 1") to a variable called Name :

GetStringIBSystemIO("Label Group Text", 254, 56, 2, Variant1, Name);

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 121

or you can use C-Bus tags :

GetStringIBSystemIO("Label Group Text", "Local", "Lighting", "Load 2",
Variant1, Name);

To compare the label with the text 'kitchen' (using string variable called s) :

GetStringIBSystemIO("Label Group Text", 254, 56, 2, Variant1, s);

if s = 'kitchen' then ...

To send a label for group address 2, Variant 1 :

SetStringIBSystemIO("Label Group Text", 254, 56, 2, Variant1, 'New label');

or you can use C-Bus tags :

SetStringIBSystemIO("Label Group Text", "Local", "Lighting", "Load 2",
Variant1, 'New Label');

Action Selector Labels

To read the label for Trigger Group 1, Action Selector number 255 into a variable s:

GetStringIBSystemIO("Label Action Selector Text", "Local", "Trigger
Control", "Trigger Group 1", 255, Variant1, s);

To set the label for Trigger Group 1, Action Selector 0, Variant 1:

SetStringIBSystemIO("Label Action Selector Text", "Local", "Trigger Control", "Trigger Group 1", 0, Variant1, 'New Label');

Variants

Variant numbers are Zero Based, so Variant 1 is actually the number 0 and so forth. To minimise the
possibility of confusion, it is recommended that the variant constants be used:

Constant Value

Variant1 0

Variant2 1

Variant3 2

Variant4 3

Language

Labels will be read and sent using the language most recently set. The default language is English
(language number 1).

The language can be set using the Label Language In-built System IO Variable. To set the language
to German (language number 50 hexadecimal):

SetIntIBSystemIO("Label Language", $50);

4.17.3.13 Using Power and Energy Data

Real-time Power Level

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 122

Several in-built System IO Variables can be used with power data:
Pulse Power Meter Level - Measured power for an individual Pulse Power Meter
Measurement App Power Value - Current power level for an Analogue Power Meter
Power Meter Total - Total power of all meters

To get the the power level for a pulse power meter:

GetRealIBSystemIO("Pulse Power Meter Level", MeterNumber, UnitType);

where
 MeterNumber is the index of the Pulse Power Meter (0 is the first one) or tag
 UnitType is the units the data is required in:

0 = Watts
1 = kg of CO

2
 per hour (uses the Carbon Footprint value)

2 = Cost per hour (uses the energy Tariff)

For example, to store the power level (Watts) for a pulse power meter called "Meter A" into a variable
called "Power":

Power := GetRealIBSystemIO("Pulse Power Meter Level", "Meter A", 0);

To get the the power level for an analogue power meter:

GetRealIBSystemIO("Measurement App Power Value", Network, DeviceId, Channel,
UnitType);

where
 Network is the C-Bus Network number
 DeviceId is the Measurement Application Device Identifier
 Channel is the Measurement Application channel number (0 is the first channel)
 UnitType is the units the data is required in (as above)

For example, to get the power level for network 254, Device Id 2, channel 3 (the fourth channel) in kg
of CO

2
 per hour:

Power := GetRealIBSystemIO("Measurement App Power Value", 254, 2, 3, 1);

To get the the total power level for all power meters:

GetRealIBSystemIO("Power Meter Total", UnitType, TariffNo);

Where TariffNo is the number of the tariff of the meters to be included in the total. Use a value of -1
to get the total for all meters.

For example, to get the total cost per hour of all power meters:

Cost := GetRealIBSystemIO("Power Meter Total", 2, -1);

For example, to get the total cost per hour of all power meters using the first tariff (in this case, this
tariff is used for off-peak power):

Cost := GetRealIBSystemIO("Power Meter Total", 2, 0);

Peak Power

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 123

Several in-built System IO Variables can be used to find the peak (maximum) power data:
Pulse Power Meter Maximum - Recorded peak power for an individual Pulse Power Meter
Measurement App Power Maximum - Recorded peak power for an Analogue Power Meter
Power Meter Maximum - Recorded peak power for total of all meters

To get the maximum power level over a period of time for a pulse power meter:

GetRealIBSystemIO("Pulse Power Meter Maximum", MeterNumber, PeriodType, PeriodQuantity, Offset, UnitType);

where
 MeterNumber is the index of the Pulse Power Meter (0 is the first one) or tag
 PeriodType is the units of the duration:

0 = Hours
1 = Days
2 = Weeks
3 = Months

 PeriodQuantity is the number of periods
 Offset is the offset back from today (in multiples of PeriodQuantity x PeriodType)
 UnitType is the units the data is required in:

0 = Watts
1 = kg of CO

2
 per hour (uses the Carbon Footprint value)

2 = Cost per hour (uses the energy Tariff)

For example, to find the maximum power (in Watts) over the past 7 days for pulse power meter
"Meter A":

Power := GetRealIBSystemIO("Pulse Power Meter Maximum", "Meter A", 1, 7, 0, 0);

To find the maximum for the 7 days prior to that, the offset will be 1:

Power := GetRealIBSystemIO("Pulse Power Meter Maximum", "Meter A", 1, 7, 1, 0);

To get the maximum power level over a period of time for an analogue power meter:

GetRealIBSystemIO("Measurement App Power Maximum", Network, DeviceId, Channel, PeriodType, PeriodQuantity, Offset, UnitType);

where
 Network is the C-Bus Network number
 DeviceId is the Measurement Application Device Identifier
 Channel is the Measurement Application channel number (0 is the first channel)
 PeriodType is the units of the duration (as above)
 PeriodQuantity is the number of periods
 Offset is the offset back from today (in multiples of PeriodQuantity x PeriodType)
 UnitType is the units the data is required in (as above)

For example, to get the maximum power level for network 254, Device Id 2, channel 3 (the fourth
channel) in kg of CO

2
 per hour over the past 3 months:

Power := GetRealIBSystemIO("Measurement App Power Maximum", 254, 2, 3, 3, 3, 0,
1);

To get the the peak total power level for all power meters:

GetRealIBSystemIO("Power Meter Maximum", PeriodType, PeriodQuantity, Offset,
UnitType, TariffNo);

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 124

Where TariffNo is the number of the tariff of the meters to be included in the total. Use a value of -1
to get the total for all meters.

For example, to get the peak total cost per hour of all power meters over the past week:

Cost := GetRealIBSystemIO("Power Meter Maximum", 2, 1, 0, 2, -1);

Energy

Several in-built System IO Variables can be used with energy data:
Pulse Power Meter Energy - Recorded energy for a Pulse Power Meter
Measurement App Energy Value - Recorded energy for an Analogue Power Meter
Power Meter Total Energy - Total energy for all meters

To get the maximum power level over a period of time for a pulse power meter:

GetRealIBSystemIO("Pulse Power Meter Energy", MeterNumber, PeriodType, PeriodQuantity, Offset, UnitType, DataType);

where
 MeterNumber is the index of the Pulse Power Meter (0 is the first one) or tag
 PeriodType is the units of the duration:

0 = Hours
1 = Days
2 = Weeks
3 = Months

 PeriodQuantity is the number of periods
 Offset is the offset back from today (in multiples of PeriodQuantity x PeriodType)
 UnitType is the units the data is required in:

0 = kWh
1 = kg of CO

2
 (uses the Carbon Footprint value)

2 = Cost (uses the energy Tariff)
3 = MJ

 DataType is:
0 = To date (energy used during the period so far)
1 = Predicted (rough estimate for the period)
2 = Average (average for as far back as data is available)

For example, to find the energy (in Watt Hours) over the past 24 hours for pulse power meter "Meter
A":

Power := GetRealIBSystemIO("Pulse Power Meter Energy", "Meter A", 0, 24, 0, 0,
0);

To find the energy for the 24 hours prior to that, the offset will be 1:

Power := GetRealIBSystemIO("Pulse Power Meter Energy", "Meter A", 0, 24, 1, 0,
0);

To find the predicted energy cost for this month:

Cost := GetRealIBSystemIO("Pulse Power Meter Energy", "Meter A", 3, 1, 0, 2,
1);

To get the maximum power level over a period of time for an analogue power meter:

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 125

GetRealIBSystemIO("Measurement App Energy Value", Network, DeviceId, Channel, PeriodType, PeriodQuantity, Offset, UnitType, DataType);

where
 Network is the C-Bus Network number
 DeviceId is the Measurement Application Device Identifier
 Channel is the Measurement Application channel number (0 is the first channel)
 PeriodType is the units of the duration (as above)
 PeriodQuantity is the number of periods
 Offset is the offset back from today (in multiples of PeriodQuantity x PeriodType)
 UnitType is the units the data is required in (as above)
 DataType is as above

For example, to get the energy used by the analogue power meter on network 254, Device Id 2,
channel 0 (the first channel) in kg of CO

2
 over the past 12 months:

Power := GetRealIBSystemIO("Measurement App Energy Value", 254, 2, 0, 3, 12, 0,
1, 0);

To get the the total energy for all power meters:

GetRealIBSystemIO("Power Meter Total Energy", PeriodType, PeriodQuantity,
Offset, UnitType, DataType, TariffNo);

Where TariffNo is the number of the tariff of the meters to be included in the total. Use a value of -1
to get the total for all meters.

For example, to get the energy used by all power meters today:

Energy := GetRealIBSystemIO("Power Meter Total Energy", 1, 1, 0, 0, 0, -1);

To get the average daily energy used by all power meters:

Energy := GetRealIBSystemIO("Power Meter Total Energy", 1, 1, 0, 0, 2, -1);

Notes

When using a period which is a multiple of days, the data is from midnight to the current day and
time. When using a period which is a multiple of weeks, the data is from midnight on a Monday to
the current day and time. When using a period which is a multiple of months, the data is from
midnight on the first of the month to the current day and time.

Predicted data is based on past history and/or the current power level. It may give unexpected
results in unusual circumstances.

Energy Tariff

The energy (electricity) tariff can be used and controlled with the "Energy Tariff" In-built System IO
Variable. This is the current energy tariff price (per kWh).

For example, to get the present cost for a tariff called "General":

TariffCost := GetRealIBSystemIO("Energy Tariff", "General");

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 126

Examples

The following examples show how to set the tariff for a variety of situations. These can be combined
for more complex requirements.

Time of day based tariff:

// Adjust the energy tariff
// - midnight - 8AM = $0.12/kWh
// - 8AM - 6PM = $0.10/kWh
// - 6PM - 8PM = $0.15/kWh
// - 8PM - midnight = $0.10/kWh

case hour of
 0,1,2,3,4,5,6,7:
 Tariff := 0.12;
 8,9,10,11,12,13,14,15,16,17:
 Tariff := 0.10;
 18,19:
 Tariff := 0.15;
 20,21,22,23 :
 Tariff := 0.10;
end;

SetRealIBSystemIO("Energy Tariff", "General", Tariff);

delay("0:30:00"); // only recalculate every 1/2 hour

Consumption based tariff:

// Adjust the tariff based on the energy consumption for the day:
// - 0 to 3kWh = $0.11/kWh
// - 3 to 10kWh = $0.13/kWh
// - 10 to 30kWh = $0.14/kWh
// - 30 to 50kWh = $0.15/kWh
// - over 50kWh = $0.16/kWh

TodaysEnergy := GetRealIBSystemIO("Power Meter Total Energy", 1, 1, 0, 0,
0)/1000;

if TodaysEnergy < 3 then
 Tariff := 0.11
else if TodaysEnergy < 10 then
 Tariff := 0.13
else if TodaysEnergy < 30 then
 Tariff := 0.14
else if TodaysEnergy < 50 then
 Tariff := 0.15
else
 Tariff := 0.16;

SetRealIBSystemIO("Energy Tariff", "General", Tariff);

delay("0:30:00"); // only recalculate every 1/2 hour

Season based tariff:

// Adjust the tariff:

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 127

// - 15 Dec to 14 Mar = $0.15/kWh
// - 15 Mar to 14 Jun = $0.12/kWh
// - 15 Jun to 14 Sep = $0.14/kWh
// - 15 Sep to 14 Dec = $0.12/kWh

if DayOfYear <= "14 Mar" then
 Tariff := 0.15
else if DayOfYear <= "14 Jun" then
 Tariff := 0.12
else if DayOfYear <= "14 Sep" then
 Tariff := 0.14
else if DayOfYear <= "14 Dec" then
 Tariff := 0.12
else
 Tariff := 0.15;

SetRealIBSystemIO("Energy Tariff", "General", Tariff);

delay("0:30:00"); // only recalculate every 1/2 hour

Net Feed-in Tariff (used when solar panels are feeding power back into the grid):

// Adjust the tariff:
// - if using power from grid, tariff = $0.20/kWh
// - if supplying power to grid, tariff = $0.45/kWh

Power := GetRealIBSystemIO("Power Meter Total", 0, -1);

if Power >= 0 then
 Tariff := 0.20
else
 Tariff := 0.45

SetRealIBSystemIO("Energy Tariff", "General", Tariff);
SetRealIBSystemIO("Energy Tariff", "Solar Panel", Tariff);

delay("0:30:00"); // only recalculate every 1/2 hour

4.17.3.14 Schedules

Schedules can be controlled using a series of In-built System IO variables:
Schedule Also On
Schedule Any Year
Schedule Count
Schedule Day of Month
Schedule Day of Month Mask
Schedule Day of Month Type
Schedule Day of Week
Schedule Day of Week Mask
Schedule Day of Week Type
Schedule Day Text
Schedule Day Type
Schedule Enabled
Schedule End
Schedule Event
Schedule Is Last Week of Month

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 128

Schedule Is Repeat
Schedule Level
Schedule Month
Schedule Month Mask
Schedule Name
Schedule Next Due
Schedule Not On
Schedule Number
Schedule Pulse Duration
Schedule Repeat Due
Schedule Repeat Interval
Schedule Start
Schedule Time
Schedule Time Text
Schedule Time Type
Schedule Year

To use or change a property of a Schedule, it is first necessary to set the value of the Schedule
Number In-built System IO Variable. Note that if the logic code changes the selected Schedule, then
anything on the user interface using the Schedule In-built System IO Variables will be changed too.

The properties of the selected Schedule are then available using the other In-built System IO
Variables.

Bit-masks

The In-built System IO Variables with "mask" in their name use bit masks to represent the state of
multiple bits of data.

To understand bit-masks, it is necessary to understand binary numbers. These are related to
Hexadecimal Numbers, but are not explained here.

In a bit-mask, each bit of a binary number is used to represent a boolean value. In the case of the
Day of The Week bit-mask, there are 7 days of the week, so there are 7 bits in the bit-mask. The
least significant bit is Sunday and the most significant bit is Saturday. So the binary representation
of a mask for the days Monday to Friday inclusive would be as follows:

So the bit-mask is 0011 1110, which is 3E hexadecimal, or 62 decimal.

Similarly, the bit-mask for months of the year is a 12 bit number with the least significant bit being
January. A bit mask for the months January to June inclusive would be:

https://secure.wikimedia.org/wikipedia/en/wiki/Binary_numeral_system

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 129

which is a binary value of 0000 0000 0011 1111 which is 003F hexadecimal or 63 decimal.

The Day of the Month Mask is a 31 bit number with the least significant bit being the first day of the
month. The most significant bit is not used.

Some useful values for bit-masks are given in the table below.

Bit-Mask Use Value
(binary)

Value
(hexadecim

al)

Value
(decimal)

Day of
Week

No days 0000 0000 00 0

Day of
Week

All Days 0111 1111 7F 127

Day of
Week

Monday - Friday 0011 1110 3E 62

Day of
Week

Saturday & Sunday 0100 0001 41 65

Day of
Month

No Days 0000 0000 0000 0000 0000 0000 0000
0000

0000 0

Day of
Month

All Days 0111 1111 1111 1111 1111 1111 1111
1111

7FFFFFFF 2147483647

Day of
Month

First week 0000 0000 0000 0000 0000 0000 0111
1111

0000007F 127

Day of
Month

Second week 0000 0000 0000 0000 0011 1111 1000
0000

00003F80 16256

Day of
Month

Third Week 0000 0000 0001 1111 1100 0000 0000
0000

001FC000 2080768

Day of
Month

Fourth Week 0000 1111 1110 0000 0000 0000 0000
0000

0FE00000 266338304

Day of
Month

Odd Days 0101 0101 0101 0101 0101 0101 0101
0101

55555555 1431655765

Day of
Month

Even Days 0010 1010 1010 1010 1010 1010 1010
1010

2AAAAAA 715827882

Month No Months 0000 0000 0000 0000 0000 0

Month All Months 0000 1111 1111 1111 0FFF 4095

Examples

To perform some action if the time of the second Schedule (number 2) is due:

SetIntIBSystemIO("Schedule Number", 2);
once time = GetIntIBSystemIO("Schedule Time") then
begin
 { do something here }

end;

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 130

Note that it is generally a better idea to have the Schedule perform an action directly if possible (for
example, controlling C-Bus or executing a Special Function) or alternatively, having the Schedule
enabling a logic module which then performs some actions, then disables itself. See Controlling
Modules from Components or Schedules for details.

To change the time the second Schedule is due to 7:00PM without disrupting the selection of the
Schedule on the user interface:

OriginalSchedule := GetIntIBSystemIO("Schedule Number"); { record for later }
SetIntIBSystemIO("Schedule Number", 2);
SetIntIBSystemIO("Schedule Time", "7:00PM");
SetIntIBSystemIO("Schedule Number", OriginalSchedule); { set selected Schedule
back to what it was }

To change the third Schedule to be due on odd days of the month:

SetIntIBSystemIO("Schedule Number", 3);
SetIntIBSystemIO("Schedule Day of Month Mask", $55555555);

4.17.4 System IO Examples

Example 1

To increment the value of an integer System IO variable called "Door Count" when the Lighting Group
Address "Door Press" goes on, the following methods could be used :

once GetLightingLevel("Door Press") then
begin
 { count is an integer variable }
 count := GetIntSystemIO("Door Count") + 1;
 SetIntSystemIO("Door Count", count);
end;

OR

once GetLightingLevel("Door Press") then
 SetIntSystemIO("Door Count", GetIntSystemIO("Door Count") + 1);

OR

once GetLightingLevel("Door Press") then
 SetIntSystemIO("Door Count", succ(GetIntSystemIO("Door Count"));

Example 2

System IO Variables "Schedule Time" and "Schedule Date" are used to set when a relay (Group
Address 1) is to be switched on. One possible solution to do this would be :

once (Time = GetIntSystemIO("Schedule Time")) and (Date = GetIntSystemIO
("Schedule Date")) then
begin
 SetLightingLevel(1, 100%, 0);
end;

Example 3

Normally a C-Bus Thermostat would be used to control an HVAC system. If you had a very simple
requirement for a heating system, you could use:

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 131

A heater controlled by a relay (group address 5)
A C-Bus temperature sensor, broadcasting on the C-Bus HVAC Application (Zone Group 1,
unswitched zone)
A user System IO variable ("Set Point") to allow the user to set the temperature

The code could look something like this:

{ constants section }
HeatingGA = 5;

{ var section }
SetPoint, Temp : real;
Heating : boolean;

{ modules }
SetPoint := GetRealSystemIO("Set Point");
Temp := GetRealIBSystemIO("HVAC Temperature", 1, HVACZoneU);
Heating := GetLightingState(HeatingGA);

if (Temp >= SetPoint + 1) and Heating then
 SetLightingState(HeatingGA, off);
if (Temp <= SetPoint - 1) and (not Heating) then
 SetLightingState(HeatingGA, on);

Note that there is +1 degree of "hysteresis" so that the heater doesn't switch off and on too rapidly.

Example 4

To get the time of the first Schedule for use with logic:

{ var section }
ScheduleTime : integer;

{ modules }
SetIntIBSystemIO("Schedule Number", 1);
ScheduleTime := GetIntIBSystemIO("Schedule Time");

4.17.5 Tutorial 5

Question 1

What are the differences between a System I/O variable and a regular Pascal variable ?

Question 2

An Integer System I/O variable called "Counter" has been defined. What is wrong with the following
statements :

1. if "Counter" = 10 then ...
2. "Counter" := 0;

Question 3

Write some code using a timer to switch off the "Bathroom Light" if it has been on for more than 30
minutes.

Question 4

Write a statement to set the "Switch On Time" System IO variable to the time that the "Spa Pump"

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 132

Group Address was switched on.

Tutorial Answers

4.18 Special Days

Special Days are used for providing more flexibility for Schedules and Access Control. Special Days
are created using the PICED Special Day Manager.

Typical uses of Special Days are to enable the user to perform specific actions on Special Days like
public holidays or school holidays.

Special Day Types

Each day has a particular Special Day type. The Special Day type indicates whether the day is a
Public Holiday or one of serval user-defined Special Day types.

The Special Day types are Integers as shown below. Special Days also have Tags which are the
names allocated using the Special Day Manager.

Special Day Type Value Meaning Default Tag

1 Normal day "Normal"

2 Public Holiday "Public Holiday"

4 User Defined 1 "Special Day 1"

8 User Defined 2 "Special Day 2"

16 User Defined 3 "Special Day 3"

32 User Defined 4 "Special Day 4"

64 User Defined 5 "Special Day 5"

128 User Defined 6 "Special Day 6"

A given date may have more than one Special Day type. For example, it may be both a public
holiday and a school holiday. In this case, the Special Day Type value for the day will be the sum of
the values in the table above. So if Special Day 1 was defined as being "School Holidays", then a
day that was a Public Holiday during school holidays will be both a Public Holiday and a School
Holiday. In this case the day's Special Day Type value will be 6 (Public Holiday (2) + school holiday
(4) = 6).

There are two functions related to Special Days :
IsSpecialDayType Function
SpecialDayType Function

4.18.1 IsSpecialDayType Function

The IsSpecialDayType function returns whether the Special Day Type of a given date is a particular
value.

Applicability

Colour C-Touch, Black & White C-Touch and PAC only.

Syntax

IsSpecialDayType(d, SpecialDayType)

d is an Integer or Date Tag

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 133

SpecialDayType is an Integer or Special Day Tag

Description

The IsSpecialDayType function returns whether the Special Day Type of the date d is of type
SpecialDayType. The result is a Boolean value (true or false).

Tags can also be used when referring to the SpecialDayType.

Example

To perform an action if today is a public holiday :
if IsSpecialDayType(date, 2) then ...

OR
if IsSpecialDayType(date, "Public Holiday") then ...

To perform an action if today is a Special Day 1 or a Special Day 2 :
if IsSpecialDayType(date, 12) then ... { 4 + 8 = 12 }

OR
if IsSpecialDayType(date, "Special Day 1" + "Special Day 2") then ...

OR
if IsSpecialDayType(date, "Special Day 1" or "Special Day 2") then ...

4.18.2 SpecialDayType Function

The SpecialDayType function returns the Special Day Type of a given date.

Applicability

Colour C-Touch, Black & White C-Touch and PAC only.

Syntax

SpecialDayType(d)

d is an Integer or Date Tag

Description

The SpecialDayType function returns the Special Day Type of the Date d. The Special Day Type
returned is an integer.

Tags can also be used when referring to the value returned by the SpecialDayType function.

Example

If Special Day 1 corresponds to school holidays and 25th December 2004 has been defined as both
a public holiday and a Special Day 1 (school holiday) then :

SpecialDayType("25 Dec 2004")

will return a value of 6 (Public Holiday (2) + school holiday (4) = 6).

To determine if a particular date is a particular Special Day type, use the IsSpecialDayType
Function. If you want to determine if today is a Public Holiday, do NOT use :

if SpecialDayType(date) = 2 then ... { this will not work }

OR
if SpecialDayType(date) = "Public Holiday" then ... { this will not work }

because these will not work if the given date is of more than one Special Day type.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 134

Alternatively, you can use Bitwise Operators. For the above example, you could use :
if (SpecialDayType(date) and 2) <> 0 then ...

OR
if (SpecialDayType(date) and "Public Holiday") <> 0 then ...

4.19 String Functions

The following functions can be used for the manipulation of Strings :
Append Procedure
Copy Procedure
DateToString Procedure
Format Procedure
Length Function
LowerCase Procedure
Pos Function
SetLength Procedure
StringToInt Function
StringToReal Function
TimeToString Procedure
UpperCase Procedure
IntToHexString Procedure
HexStringToInt Function
StringToUTF8 Procedure
UTF8ToString Procedure

4.19.1 Append Procedure

The append procedure concatenates two strings.

Syntax

append(string1, string2);

string1 is a string variable
string2 is a string or char

Description

String2 is added onto the end of string1.

Example

The code :
string1 := 'abc';

append(string1, '123');

results in string1 becoming 'abc123'.

4.19.2 Copy Procedure

The copy procedure extracts a substring of a string.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 135

Syntax

Copy(string1, string2, Index, Count);

string1 is a string variable
string2 is a string
Index and Count are integers

Description

Copy extracts a substring containing Count characters starting at character number Index, and
stores it in String1.

If Index is larger than the length of String2, Copy returns an empty string. If Count specifies more
characters than are available, only the characters from number Index to the end of String2 are
returned.

Example

The code :
Copy(string1, 'abcdefgh', 3, 2);

results in string1 becoming 'cd'.

4.19.3 DateToString Procedure

The DateToString procedure converts a Date to a string.

Syntax

DateToString(date1, string1);

date1 is an integer
string1 is a string variable

Description

DateToString converts the date1 parameter to a string using the Windows date format and stores it
in String1.

Example

The code :
DateToString(35065, string1);

results in string1 becoming something like '1/1/1996' (depending on the date format selected from
the Windows Control Panel).

The code :
DateToString(date, string1);

results in string1 becoming the current date.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 136

4.19.4 Format Procedure

The format procedure produces a string containing a list of values of parameters.

Syntax

Format(string, argument list);

string is a string variable
argument list is a list of arguments (integer, real, boolean, char or string)

Description

The format function operates in a similar way to the WriteLn function, except that the result is stored
in a string. The argument list uses the same format as the WriteLn procedure.

Example

The code :
i := 5;

Format(string1, 'result =', i:3);

results in string1 becoming 'result = 5'.

4.19.5 Length Function

The length function returns an integer which represents the length (number of characters) of the
string.

Syntax

length(String1)

Description

Length returns the number of characters actually used in the string.

Example

length('abcdef') equals 6

To perform an action if the length of string s is zero :
if length(s) = 0 then ...

See also SetLength Procedure.

4.19.6 LowerCase Procedure

The LowerCase procedure converts a string to lower case.

Syntax

LowerCase(string1);

string1 is a string variable

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 137

Description

LowerCase changes String1 so that all letters are converted to lower case. The conversion affects
only ASCII characters between 'A' and 'Z'.

Example

The code :
String1 := 'ABCdef';

LowerCase(string1);

results in string1 becoming 'abcdef'.

See also UpperCase Procedure

4.19.7 Pos Function

The pos function returns the position of a specified substring that occurs in a given string.

Syntax

pos(Substr, S)

Where
Substr is a string expression and is the string to be found
s is a string expression and is the string being searched

Description

Pos searches for a substring, Substr, in a string, S.

Pos searches for Substr within S and returns an integer value that is the index of the first character
of Substr within S. Pos is case-sensitive. If Substr is not found, Pos returns zero.

Example

pos('de', 'abcdefgh') equals 4

To perform an action if the string 'get' is in the string s :
if pos('get', s) <> 0 then ...

See also Pos2 Function

4.19.8 Pos2 Function

The pos2 function returns the position of the specified substring that occurs in a given string.

Syntax

pos2(Substr, S, n)

Where
Substr is a string expression and is the string to be found
s is a string expression and is the string being searched
n is an integer expression and is the starting position for the search

Description

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 138

Pos2 searches for a substring, Substr, in a string, S starting from position n.

Pos2 searches for Substr within S, starting from position n, and returns an integer value that is the
index of the first character of Substr within S. Pos2 is case-sensitive. If Substr is not found, Pos2
returns zero.

Note

pos(substr, s) is equivalent to pos2(substr, s, 1).

Example

pos2('de', 'abcdefghabcdefgh', 2) equals 4
pos2('de', 'abcdefghabcdefgh', 6) equals 12

See also Pos Function

4.19.9 SetLength Procedure

The SetLength procedure sets the length of a string.

Syntax

SetLength(string1, NewLength);

string1 is a string variable
NewLength is an integer

Description

SetLength simply sets the length-indicator character (the character at string1[0]) to the given value.
In this case, NewLength must be a value between 0 and the maximum length of the string. Existing
characters in the string or elements in the array are preserved, but the content of newly allocated
space is undefined.

Note that this does not affect the maximum length of a string - this is set by the string declaration.

Example

The code :
String1 := 'abcdefghij';

SetLength(string1, 3);

results in string1 becoming 'abc'.

The code :
String1 := 'abcdefghij';

SetLength(string1, 20);

results in the start of string1 becoming 'abcdefghij', but the next 10 characters are undefined, and
could be anything.

4.19.10 StringToInt Function

The StringToInt function converts a string to an Integer.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 139

Syntax

StringToInt(string1)

string1 is a string expression

Description

StringToInt converts the string1 parameter to an integer value. String is a string-type expression; it
must be a sequence of characters that form a signed integer number. If the string is not a valid
number, then the result of the function will be zero.

To convert an integer to a string, use the Format Procedure.

Example

The code :
int1 := StringToInt('23');

results in int1 becoming 23.

See also StringToIntDef Function

4.19.11 StringToIntDef Function

The StringToIntDef function converts a string to an Integer.

Syntax

StringToIntDef(string1, default)

string1 is a string expression
default is an integer

Description

StringToIntDef converts the string1 parameter to an integer value. String is a string-type expression;
it must be a sequence of characters that form a signed integer number. If the string is not a valid
number, then the result of the function will be the default value.

To convert an integer to a string, use the Format Procedure.

Example

The code :
int1 := StringToInt('23', -1);

results in int1 becoming 23.

The code :
int1 := StringToInt('ABC', -1);

results in int1 becoming -1.

See also StringToInt Function

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 140

4.19.12 StringToReal Function

The StringToReal function converts a string to a Real number.

Syntax

StringToReal(string1)

string1 is a string expression

Description

StringToReal converts the string1 parameter to a real value. String is a string-type expression; it
must be a sequence of characters that form a signed real number. If the string is not a valid number,
then the result of the function will be zero.

To convert a real number to a string, use the Format Procedure.

Example

The code :
real1 := StringToReal('23.45');

results in real1 becoming 23.45

4.19.13 TimeToString Procedure

The TimeToString procedure converts a Time to a string.

Syntax

TimeToString(time1, string1);

time1 is an integer
string1 is a string variable

Description

TimeToString converts the time1 parameter to a string using the Windows time format and stores it
in String1.

Example

The code :
TimeToString(3600, string1);

results in string1 becoming something like '1:00:00AM' (depending on the time format selected from
the Windows Control Panel).

The code :
TimeToString(time, string1);

results in string1 becoming the current time.

See also DurationToString Procedure

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 141

4.19.14 DurationToString Procedure

The DurationToString procedure converts a Time to a string.

Applicability

Colour C-Touch only.

Syntax

DurationToString(time1, string1);

time1 is an integer
string1 is a string variable

Description

DurationToString converts the time1 parameter to a string and stores it in String1. It does not use
any AM/PM indication and hence is useful for showing the text for a duration or elapsed time, rather
than the current time. The Windows settings are used for the separators between the hours, minutes
and seconds.

Example

The code :
TimeToString(3600, string1);

results in string1 becoming something like '1:00:00' (depending on the time format selected from the
Windows Control Panel).

The code :
TimeToString(TimerTime(1), string1);

results in string1 becoming the time of Timer 1.

See also TimeToString Procedure

4.19.15 UpperCase Procedure

The UpperCase procedure converts a string to upper case.

Syntax

UpperCase(string1);

string1 is a string variable

Description

UpperCase changes String1 so that all letters are converted to upper case. The conversion affects
only ASCII characters between 'a' and 'z'.

Example

The code :
String1 := 'ABCdef';

UpperCase(string1);

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 142

results in string1 becoming 'ABCDEF'.

See also LowerCase Procedure

4.19.16 IntToHexString Procedure

The IntToHexString procedure converts an integer to a Hexadecimal number string.

Syntax

IntToHexString(number, precision, string1);

number is an integer
precision is an integer
string1 is a string variable

Description

IntToHexString converts the number parameter to a string.

The precision parameter is the number of digits in the result. If there are more digits in the precision
than in the number, then the string will be padded with 0s at the front. A precision if 0 makes the
string exactly the right length. A negative precision, or one greater than 12, will result in a value of 12
being used for the precision.

Negative numbers are represented as two's complement numbers.

Example

The code :
IntToHexString(255, 4, string1);

results in string1 becoming '00FF'.

The code :
IntToHexString(255, 0, string1);

results in string1 becoming 'FF'.

See also HexStringToInt Function

4.19.17 HexStringToInt Function

The HexStringToInt function converts a string containing a Hexadecimal Number to an integer.

Syntax

HexStringToInt(string1)

string1 is a string variable

Description

HexStringToInt converts the hexadecimal number in the string parameter to an integer. If the string
does not contain a valid hexadecimal number, the result will be 0.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 143

The maximum value is limited by the range of Integers (2147483647 or 7FFFFFFF hexadecimal).

Example

The code :
n := HexStringToInt('FF');

results in n becoming 255.

See also IntToHexString Procedure

4.19.18 StringToUTF8 Procedure

The StringToUTF8 procedure converts a normal (Unicode) string to a UTF-8 encoded string.

Applicability

Colour C-Touch only.

Syntax

StringToUTF8(string1)

string1 is a string variable

Description

StringToUTF8 converts the string to the UTF-8 format for use with writing to files, serial ports and
sockets.

See UTF-8 Example

4.19.19 UTF8ToString Procedure

The UTF8ToString procedure converts a string from UTF-8 encoding to a normal (Unicode) string.

Applicability

Colour C-Touch only.

Syntax

UTF8ToString(string1)

string1 is a string variable

Description

UTF8ToString converts the string from the UTF-8 format for use with reading from files, serial ports
and sockets.

See UTF-8 Example

4.20 Other Functions

The following functions are related to the use of the Logic Engine, and are not standard Pascal
functions :

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 144

Beep Procedure
CurrentPage Function
Execute Procedure
GetAccessLevel Function
LevelToPercent Function
LogMessage Procedure
PercentToLevel Function
ShowPage Procedure
ShowingPage Function
Execute Special Function Procedure

4.20.1 Beep Procedure

The Beep procedure makes a default beep sound.

Applicability

Colour C-Touch and Black & White C-Touch only.

Syntax

Beep;

Note : the Execute Procedure can be used to play particular sound files.

4.20.2 CurrentPage Function

The CurrentPage function returns the number of which page is currently showing.

Applicability

Colour C-Touch and Black & White C-Touch only.

Syntax

CurrentPage

Description

The CurrentPage function returns an integer which is page the PICED software is currently
displaying. This is particularly useful for Graphics. Note that the first page number is 0, not 1.

Example

To perform an action if the PICED page has just changed :
if CurrentPage <> OldPage then

begin

 OldPage := CurrentPage;

 ...

end;

See also ShowingPage Function

4.20.3 Execute Procedure

The Execute procedure is used to play a sound file.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 145

Applicability

Colour C-Touch only.

Syntax

Execute(Command, CommandParameters);

Command is a string
CommandParameters is a string (unused)

Description

In HomeGate and Schedule Plus, the Execute procedure is used to run a program or open a file. For
Colour C-Touch, this can only be used to play a sound (WAV) file. The function arguments are :

Command : This is the file name of the WAV file
CommandParameters : This is unused and should be an empty string ('').

Example
To Play a sound file "test.wav" which is located in the project folder (the folder containing the current
project):

Execute('test.wav', '');

 Note that all files used in logic (including WAV files) need to be included with the project archive
when transferred to a Colour C-Touch. See the main help file topic Exporting to an Archive.

4.20.4 GetAccessLevel Function

The GetAccessLevel function returns the current user access level.

Applicability

Colour C-Touch and Black & White C-Touch only.

Syntax

GetAccessLevel

Description

GetAccessLevel returns the current user access level. The lowest level is index 0.

Example

To store the current user access level in the variable AccessLevel :
AccessLevel := GetAccessLevel;

4.20.5 LevelToPercent Function

The LevelToPercent function converts a C-Bus level to a percent.

Syntax

LevelToPercent(level)

Description

The LevelToPercent function converts a C-Bus level (0 to 255) to a percent (0 to 100). See percent

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 146

for more details.

Example

To store the percent equivalent of the variable Level in the variable PC :
PC := LevelToPercent(Level);

See also PercentToLevel Function

4.20.6 LogMessage Procedure

The LogMessage procedure writes a message to the log.

Applicability

Colour C-Touch only.

Syntax

LogMessage(s);

s is a string

Description

The LogMessage procedure writes the string s to the PICED log and to the Logic Output Window.
This is useful for Debugging Programs.

The WriteLn Procedure will also write data to the log if the Send WriteLn output to Log option is
selected in the Logic Engine Options.

Example

To write the string 'start' to the log :
LogMessage('start');

4.20.7 ShowPage Procedure

The ShowPage procedure shows a PICED page.

Applicability

Colour C-Touch and Black & White C-Touch only.

Syntax

ShowPage(p);

p is an Integer or page name Tag

Description

The ShowPage procedure shows the selected PICED page. Note that the first page number is 0, not
1.

Example

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 147

To display a PICED page called "warning" :
ShowPage("warning");

See also ShowingPage Function, ShowSubPage Procedure

4.20.8 ShowingPage Function

The ShowingPage function returns whether a page is showing.

Applicability

Colour C-Touch and Black & White C-Touch only.

Syntax

ShowingPage(p)

p is an Integer or page name Tag

Description

The ShowingPage function returns whether the selected PICED page is currently being displayed.
This is particularly useful for Graphics. Note that the first page number is 0, not 1.

Example

To perform an action if the PICED page called "warning" is being displayed :
if ShowingPage("warning") then ...

See also CurrentPage Function, ShowingSubPage Function

4.20.9 Halt Statement

The Halt statement stops the Logic Engine from Running.

Syntax

Halt

Example

To stop the Logic Engine if a variable called Counter reaches a value of 10 :
if Counter = 10 then
 Halt;

To stop the Logic Engine and then restart it, see the Restart Statement.

4.20.10 Restart Statement

The Restart statement stops the Logic Engine from Running and then restarts it.

Syntax

Restart

Example

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 148

To stop the Logic Engine and then restart it if a boolean system IO variable called Restart is true :
if GetBoolSystemIO("Restart") then
 Restart;

To stop the Logic Engine without restarting, see the Halt Statement.

4.20.11 Tutorial 6

In all of the following questions, variables called String1 and String2 are string variables.

Question 1

Write a statement to assign String1 with the first 3 characters of String2.

Question 2

Write some code to assign String1 with the text "Date = " followed by the current date.

Question 3

String1 contains some text containing the text "Level" followed by three characters containing an
integer. Extract the integer and assign it to a variable called x.

Question 4

Write a statement to play a wav file called "HomeTime.wav" at 5:30PM every day.

Question 5

A System IO variable called "Desired Level" contains a C-Bus level in %. A boolean System IO
variable called "Set Now" is used to set the level when it is set to true. Write some code to set the
"Lounge Light" to the level of the "Desired Level" when "Set Now" is true.

Question 6

Write a statement to set the "All On" Scene at 8:30AM on weekdays (Monday to Friday) which are
not a public holiday.

Tutorial Answers

4.20.12 PercentToLevel Function

The PercentToLevel function converts a C-Bus level to a percent.

Syntax

PercentToLevel(level)

Description

The PercentToLevel function converts a percent (0 to 100) to a C-Bus level (0 to 255). See percent
for more details.

Example

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 149

To store the percent equivalent of the variable PC in the variable Level :
Level := PercentToLevel(PC);

See also LevelToPercent Function

4.20.13 ExecuteSpecialFunction Procedure

The ExecuteSpecialFunction procedure executes a Special Function.

Applicability

Colour C-Touch and Black & White C-Touch only.

Syntax

ExecuteSpecialFunction(SpecialFunction, Parameter);

SpecialFunction is a Special Function Tag
Parameter is an Integer or String. It is only needed for some special functions as described below.

Description

The ExecuteSpecialFunction procedure executes a Special Function. Not all Special Functions are
available in logic. Some Special Functions require a Parameter as show below :

Special Function Parameter

Irrigation, Run Zone Irrigation Zone number

Labels, Set Language Label language number

Page Transition Page Transition tag or number

Security Keypad ASCII value of key

Telephony Divert Phone Number (string)

Media Transport Control Media Link Group

All others Ignored (leave as 0)

Example

To switch on the alarm when a User System IO Variable called "Alarm Trigger" becomes true :

once GetBoolSystemIO("Alarm Trigger") = ON then
 ExecuteSpecialFunction("Alarm On", 0);

To have Media Link Group 1 change to the next track:

ExecuteSpecialFunction("Media Transport Control Next Track", 1);

To transmit an emulation of a security keypad "1" key press (ASCII 49 = "1"):

ExecuteSpecialFunction("Security Keypad", 49);

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 150

4.21 C-Bus Unit Functions

The following functions are only applicable to C-Bus Units (PAC, C-Touch Mark II and Wiser Home
Control) :

SetLEDState Procedure
ToggleLEDState Procedure
IsPAC Function
IsCTouch Function
IsCBusUnit Function
IsWiser Function

The C-Bus Units do not support :
Sets
System IO
Special Days
Graphics
Socket (TCP/IP) IO
Files
Beep Procedure
Execute Procedure
GetAccessLevel Function
LogMessage Procedure
ShowPage Procedure
ShowingPage Function

The C-Bus Unit firmware will be updated from time to time, so additional functions may be available
in the future.

4.21.1 SetLEDState Procedure

The SetLEDState procedure sets the state of the PAC User LED.

Applicability

Black & White C-Touch and PAC only.

Syntax

SetLEDState(state);

Description

The SetLEDState procedure sets the state of the PAC User LED to that of the state parameter. If
state = true the User LED is on. The User LED can be used for debugging purposes.

When the PICED software is running, the PAC LED state is shown on the status bar of the main
form (it is shown as a green circle if the LED is on).

Example

To set the User LED to be the same as the state of the Kitchen Light :
SetLEDState(GetLightingState("Kitchen"));

See also ToggleLEDState Procedure

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 151

4.21.2 ToggleLEDState Procedure

The ToggleLEDState procedure toggles the state of the PAC User LED.

Applicability

Black & White C-Touch and PAC only.

Syntax

ToggleLEDState(state);

Description

The ToggleLEDState procedure toggles (swaps) the state of the PAC User LED. If the User LED is
was on it goes off and vice versa. The User LED can be used for debugging purposes.

When the PICED software is running, the PAC LED state is shown on the status bar of the main
form (it is shown as a green circle if the LED is on).

Example

To toggle the User LED each time the Counter gets to 10 :
if Counter = 10 then

begin

 ToggleLEDState;

 Counter := 0;

end;

See also SetLEDState Procedure

4.21.3 IsPAC Function

The IsPAC function returns whether the logic is running in a PAC.

Syntax

IsPAC

Description

The IsPAC function is used to determine whether the logic is running on a PAC. It returns a Boolean
result. This is usually used to select various parts of code depending on whether the code is running
on the computer or in the PAC.

Example

To execute some code only if the logic is running in the PAC :
if IsPAC then

begin

 ...

end;

4.21.4 IsCTouch Function

The IsCTouch function returns whether the logic is running in a C-Touch unit.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 152

Syntax

IsCTouch

Description

The IsCTouch function is used to determine whether the logic is running on a C-Touch. It returns a
Boolean result. This is usually used to select various parts of code depending on whether the code
is running on the computer or in the C-Touch.

Example

To execute some code only if the logic is running in the C-Touch :
if IsCTouch then

begin

 ...

end;

4.21.5 IsCBusUnit Function

The IsCBusUnit function returns whether the logic is running in a C-Bus Unit.

Syntax

IsCBusUnit

Description

The IsCBusUnit function is used to determine whether the logic is running in a C-Bus Unit (PAC,
Black and White C-Touch, Colour C-Touch, C-Touch Spectrum or Wiser). It returns a Boolean result
which has a value of true if running in a C-Bus unit. This is usually used to select various parts of
code depending on whether the code is running on the computer or in the C-Bus Unit.

Example

To open a serial port only if the code is running in a C-Bus unit:

if IsCBusUnit then
begin
 OpenSerial(1, 1, 9600, 8, scOneStopBit, scNoFlowControl, scNoParity);
end;

To execute some debugging code only if the logic is running on the computer :
if not IsCBusUnit then

begin

 WriteLn('Group Address 30 = ', GetLightingLevel(30));

end;

See also IsCTouch Function, IsPAC Function, IsWiser Function

4.21.6 IsWiser Function

The IsWiser function returns whether the logic is running in a Wiser Home Control unit.

Syntax

IsWiser

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 153

Description

The IsWiser function is used to determine whether the logic is running on a Wiser Home Control. It
returns a Boolean result. This is usually used to select various parts of code depending on whether
the code is running on the computer or in the Wiser Home Control.

Example

To execute some code only if the logic is running in the Wiser Home Control :
if IsWiser then

begin

 ...

end;

4.21.7 IsMasterUnit Function

The IsMasterUnit function returns whether the unit is the Master Unit.

Syntax

IsMasterUnit

Description

The IsMasterUnit function is used to determine whether the unit is the Master Unit. It returns a
Boolean result.

The Master Unit In-Built System IO Variable can also be used to read and set the Master Unit
setting.

Example

To execute some code only if the unit is the Master Unit :
if IsMasterUnit then

begin

 ...

end;

4.22 Flow Control

Unless directed otherwise, the statements in a program will be executed in the order in which they
appear. Sometimes there is a need to not execute some statements, or to execute statements
several times.

Looping means repeating a statement or compound statement over and over until some condition is
met.
There are three types of loops:

fixed repetition - only repeats a fixed number of times
pretest - tests a Boolean expression, then goes into the loop if TRUE
posttest - executes the loop, then tests the Boolean expression

The IF THEN statement is used to execute statements under specific circumstances. There is also
a ONCE statement and HasChanged and ConditionStaysTruefunctions, which are not standard
Pascal, but were incorporated in the Logic Engine because it simplifies many common tasks for
automation.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 154

Modules can also be used to control which parts of a program will be executed.

4.22.1 If Statement

The IF statement allows you to perform an action based on the result of a Boolean condition. There
are two forms of if statement: if...then and the if...then...else. The syntax of an if...then statement is

if condition then statement

where condition returns a Boolean value. If condition is True, then statement is executed; otherwise
it is not. For example,

if J <> 0 then

 Result := I/J;

In this example, the result will only be calculated if J is not equal to zero.

The syntax of an if...then...else statement is

if condition then statement1 else statement2

where condition returns a Boolean value. If condition is True, then statement1 is executed; otherwise
statement2 is executed. For example,

if J = 0 then

 WriteLn('error')

else

 Result := I/J;

The then and else clauses contain one statement each, but it can be a compound statement. For
example,

if J <> 0 then

begin

 Result := I/J;

 Count := Count + 1;

end

else if Count = Last then

 Done := True;

Notice that there is never a semicolon between the then clause and the word else. You can place a
semicolon after an entire if statement to separate it from the next statement in its block, but the then
and else clauses require nothing more than a space or carriage return between them. Placing a
semicolon immediately before else (in an if statement) is a common programming error.

A special difficulty arises in connection with nested if statements. The problem arises because
some if statements have else clauses while others do not, but the syntax for the two kinds of
statement is otherwise the same. In a series of nested conditionals where there are fewer else
clauses than if statements, it may not seem clear which else clauses are bound to which ifs.
Consider a statement of the form

if condition1 then if condition2 then statement1 else statement2;

There would appear to be two ways to interpret this:

if condition1 then [if condition2 then statement1 else statement2];

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 155

if condition1 then [if condition2 then statement1] else statement2;

The compiler always interprets it the first way. Hence the statement

if ... { condition1 } then

 if ... { condition2 } then

 ... { statement1 }

 else
 ... { statement2 } ;

is equivalent to

if ... { condition1 } then

begin

 if ... { condition2 } then

 ... { statement1 }

 else

 ... { statement2 }

end;

The rule is that nested conditionals are parsed starting from the innermost conditional, with each
else bound to the nearest available if on its left. To force the compiler to read our example in the
second way, you would have to write it explicitly as

if ... { condition1 } then

begin

 if ... { condition2 } then

 ... { statement1 }

end

else

 ... { statement2 } ;

There is no harm in explicitly placing the begin and end statements, even if they are not required. At
least there is less chance of making an error.

Optimisation of IF Statements

With a complex If / Then statement, such as :

if condition1 and condition2 and condition3 and condition4 and condition5
then ...

all of the conditions are evaluated each scan. This could also be written as :

if condition1 then

 if condition2 then

 if condition3 then

 if condition4 and condition5 then ...

In this case, only condition1 is evaluated each scan. If it is true, then condition2 will be evaluated
and so on. This results in code which executes much quicker, as there is less work being done
each scan. The trade-off is that the code may be a little less readable. It also can not be done where
OR logic is used.

The code can be optimised further by having condition1 as something that is simple to evaluate
(such as time = "9:00PM") rather than something more time consuming (such as
MyComplexFunction = 23). Ideally, condition1 should be something that is only true occasionally,

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 156

so that condition2 etc rarely get evaluated. For example, if condition1 was (time = "9:00PM"), then it
will only be true for one second per day, and hence the other conditions will only be evaluated once
per day.

See also When to use if and once

4.22.2 Once Statement

The format of the Once statement is :

once condition then

 statement;

The Once statement is similar to the IF THEN statement, except that the statement is only
executed on the scan when the condition first becomes true. The condition needs to go false, then
true again for the statement to be executed again as shown in the diagram below :

Note that there can not be an "else" clause as there can with an if statement.

If the condition is true when the Logic Engine first runs, the statement will not be executed. The
condition needs to change from false to true in order for the statement to be executed.

Examples

If you want to switch on a lamp when the lounge light goes on, you could do :

if GetLightingState("Lounge") then

 SetLightingState("Lamp", ON);

but the statement switching on the lamp would be executed every time the Module was run,
resulting in the lamp being switched on repeatedly while the Lounge light was on. This is obviously
not a good thing to do.

A better approach is to do :

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 157

once GetLightingState("Lounge") then

 SetLightingState("Lamp", ON);

In this case, the statement switching on the lamp would be executed only when the Lounge light
was first switched on. Until the Lounge light is switched off, then on again, the lamp will not be
switched on again.

See also When to use if and once and HasChanged Function

4.22.3 When to use if and once

The if and once statements do have different purposes, and are usually not interchangeable.

The once statement is used when you want an action when a condition first becomes true. The if
statement is used when you want an action every scan when the condition is true.

Each time the once statement is evaluated, the Logic Engine looks at the state of the condition. If
the condition is TRUE and it was FALSE the last time it was executed then it will execute the
statement. The consequences of this are that there are several situations where a once statement
may not do what you may expect :

A once statement will never execute on the first scan, even if the condition is true (because the
previous state is unknown).
A once statement should never be used inside a loop (repeat, while, for) - see below
A once statement should never be used inside an if or once statement - see below
A once statement should never be used inside a Function or Procedure

Once Inside a Loop

Do not use a once statement inside a for loop, such as :

for Group := 10 to 15 do

 once GetLightingState(Group) = ON then { don't do this }

 SetLightingLevel("Corridor", ON);

In the above example, the intention is to switch on the Corridor light when any of Group Address 10
to 15 first go on. The problem is that each time the condition is evaluated, the Group variable has
changed, and so it is not comparing the current value of the Group Address with what is was
previously. It is actually comparing each Group Address with the previous one.

In the above example, suppose Group Addresses 10, and 12 are off and the others are on, and that
they have been at these levels for some time. On the first loop, Group = 10 and the once condition is
false. On the second loop, Group = 11 and the condition is true. The once condition has gone from
false to true, and so the statement will be executed even though none of the Group levels have
changed. One the third loop, Group = 12 and the condition is false again. On the fourth loop, Group
= 13 and the condition is true and once again the statement will be executed. On the fifth loop,
Group = 14 and the condition is true, but since it was true previously, then the statement will not be
executed.

This could be made to work if the code was re-written as :

once GetLightingState(10) or GetLightingState(11) or GetLightingState(12) or
GetLightingState(13) or

 GetLightingState(14) or GetLightingState(15) then

 SetLightingLevel("Corridor", ON);

or if there was a scene called "office lights" containing Group Addresses 10 to 15, you could use :

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 158

once GetSceneMaxLevel("office lights") > 0 then

 SetLightingLevel("Corridor", ON);

Once Inside if

The problem with having a once statement inside an if statement is similar. Do not write code like :

if GetLightingState("Partition") = ON then

begin

 once GetLightingState("Conference Room 1") = ON then

 SetLightingLevel("Conference Room 2", ON);

 once GetLightingState("Conference Room 1") = OFF then

 SetLightingLevel("Conference Room 2", OFF);

 once GetLightingState("Conference Room 2") = ON then

 SetLightingLevel("Conference Room 1", ON);

 once GetLightingState("Conference Room 2") = OFF then

 SetLightingLevel("Conference Room 1", OFF);

end;

In this example there is a conference room with a moveable partition. There is a light in both sides of
the room. There is a sensor attached to the partition which switches on a Group Address when the
partition is open. When the partition is closed, the lights operate independently. If the partition is
open, the lights need to operate together.

When the partition is open or closed, the code operates as expected. When the partition first opens
("Partition" group goes on), there is a problem. In this case, if any of the once conditions are true,
the Logic Engine will look at the value the last time the condition was evaluated. The problem is that
the last time the conditions were evaluated was when the partition was first closed, which may have
been days ago.

Consider the case where Conference Room 1 light is off and then the partition is closed. The once
conditions will not be evaluated while the partition is closed. If the light is now switched on and some
time later the partition is opened, the once condition will be evaluated again and it will be found to
have changed from false to true and hence switch on Conference Room 2 light even though light 1
has actually been on for some time.

There are several ways of overcoming this problem. The easiest is to put the if statement inside the
once statement :

once GetLightingState("Conference Room 1") = ON then

 if GetLightingState("Partition") = ON then

 SetLightingLevel("Conference Room 2", ON);

once GetLightingState("Conference Room 1") = OFF then

 if GetLightingState("Partition") = ON then

 SetLightingLevel("Conference Room 2", OFF);

once GetLightingState("Conference Room 2") = ON then

 if GetLightingState("Partition") = ON then

 SetLightingLevel("Conference Room 1", ON);

once GetLightingState("Conference Room 2") = OFF then

 if GetLightingState("Partition") = ON then

 SetLightingLevel("Conference Room 1", OFF);

There is still one bug here, which is quite minor. When light 1 goes on, it will switch light 2 on (if the
partition is open). The third once statement will see light 2 going on and it will switch light 1 on
again. Since only one extra message is generated, it is not really worthwhile worrying about, but it
can be fixed quite easily. This is left to the reader as an exercise :-)

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 159

See also Handling Triggers

4.22.4 ConditionStaysTrue Function

The ConditionStaysTrue function returns whether a condition has stayed true for a certain time.

Syntax

ConditionStaysTrue(condition, duration)

condition is a Boolean expression
duration is an Integer which is the delay time in seconds.

Description

The ConditionStaysTrue function is used to perform an action after a certain condition has been true
and stayed true for a certain amount of time. It is often used in place of a Delay.

The ConditionStaysTrue function result is true when the condition has gone true and stayed true for
the duration period. It will only be true on the scan when the duration is complete. After that it will
return false again. The condition will need to go false again then stay true again for the duration
before the ConditionStaysTrue function result will go true again.

In the example below, a condition is being tested to see if it stays true for more than 2 seconds. The
ConditionStaysTrue function will only be true on the scan when the duration has been 2 seconds.
Even though the condition stays true for another 2 seconds, the ConditionStaysTrue function does
not go true again because the condition has not returned to false.

Notes

It does not matter whether the ConditionStaysTrue gets used with an If Statement or a Once
Statement, but "if" is preferred.

Like a once statement, the ConditionStaysTrue function should not be used inside a loop.

There is a limit of 50 (PAC or C-Touch Mark 2) or 250 (Colour C-Touch) ConditionStaysTrue
functions in a program.

Example

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 160

If you wanted to switch on a fan if a light has been on for one minute, you could use the code :
if ConditionStaysTrue(GetLightingState("light") = ON, 60) then

 SetLightingState("fan", ON);

This is different from the following code :
if GetLightingState("light") = ON then

begin

 delay(60:

 SetLightingState("fan", ON);

end;

There are two differences :
1. In the second case, the fan goes on after 60 seconds, even if the light goes off again before 60
seconds has finished
2. In the second case, the module stops while the delay happens. In the first case, the rest of the
module is still running.

If you wanted the execution of the module to pause while the condition stayed true, you could use
code like :

StartTime := RunTime;

WaitUntil((GetLightingState("light") = OFF) or (RunTime - StartTime >= 60));

SetLightingState("fan", ON);

4.22.5 HasChanged Function

The HasChanged function returns whether a value has changed.

Syntax

HasChanged(value)

value is an Integer, Real or Boolean expression

Description

The HasChanged function returns whether an integer, real or boolean value has changed since the
last time the value was evaluated (generally, the last scan). It is used to perform an action when
something changes.

Notes

It generally does not matter whether the HasChanged gets used with an If Statement or a Once
Statement, but using "if" is preferred.

Like a once statement, the HasChanged function should not be used inside a loop.

There is a limit of 50 (PAC or C-Touch Mark 2) or 250 (Colour C-Touch) HasChanged functions in a
program.

Examples

To perform some action when the "Lounge" light changes level:

if HasChanged(GetLightingLevel("Lounge")) then...

To set the "Outside" light to be the same as the "Control" User System IO Variable each time it
changes:

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 161

if HasChanged(GetIntSystemIO("Control")) then

begin

 SetLightingLevel("Outside", GetIntSystemIO("Control"), 0);

end;

See also Once Statement
4.22.6 Case Statement

The case statement provides a simpler alternative to complex if statements. A case statement has
the form

case SelectorExpression of

 CaseList1: statement1;

 ...

 CaseListn: statementn;

end;

where SelectorExpression is any expression of an ordinal type (string types are invalid). Each
CaseList is a numeral, declared constant, or other expression that the compiler can evaluate without
executing your program. It must be of an ordinal type compatible with SelectorExpression. Thus the
constants 7, True and 'A' can all be used in Case Lists, but variables and function calls cannot.

When a case statement is executed, at most one of its constituent statements is executed.
Whichever CaseList has a value equal to that of SelectorExpression determines the statement to be
used.

The case statement allows you to rewrite code which uses a lot of if else statements, making the
program logic much easier to read. Consider the following code portion written using if else
statements (operator is a Char Type):

if operator = '*' then result := number1 * number2

else if operator = '/' then result := number1 / number2

else if operator = '+' then result := number1 + number2

else if operator = '-' then result := number1 - number2;

Rewriting this using case statements results in much clearer code :
case operator of

 '*' : result:= number1 * number2;

 '/' : result:= number1 / number2;

 '+' : result:= number1 + number2;

 '-' : result:= number1 - number2;

end;

The value of operator is compared against each of the values specified. If a match occurs, then the
program statement(s) associated with that match are executed.

It is possible to group cases as shown below :

case user_request of

 'A', 'a' : call_addition_subprogram;

 's', 'S' : call_subtraction_subprogram;

end;

A second form of the case statement contains an "else" statement:

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 162

case SelectorExpression of

 CaseList1: statement1;

 ...

 CaseListn: statementn;

else

 ElseStatement;

end;

If none of the CaseLists has the same value as SelectorExpression, then the ElseStatement will be
executed.

For example, with the code:

case a of
 1 : b := 2;
 2 : b := 5;
 5 : b := 10;
else
 b := 1;
end;

If a is less than 1, equals 3 or 4 or is greater than 5, then b will be assigned a value of 1.

4.22.7 When to use if and case

Similar things can be achieved using the If Statement and the Case Statement. If you wanted to use
a lighting level to select between doing three different things, you could write code like :

if GetLightingLevel("select") = 0 then

begin

 { do first thing }

end;

if GetLightingLevel("select") = 1 then

begin

 { do second thing }

end;

if GetLightingLevel("select") = 2 then

begin

 { do third thing }

end;

The problem with this code is that each of the statements gets executed on every scan, even though
only one can be true at a time (ie they are mutually exclusive). A better way to write the code would
be :

if GetLightingLevel("select") = 0 then

begin

 { do first thing }

end

else if GetLightingLevel("select") = 1 then

begin

 { do second thing }

end

else if GetLightingLevel("select") = 2 then

begin

 { do third thing }

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 163

end;

In this case, the second if statement is only evaluated if the first one is false. Similarly, the third is
only evaluated if the first two are false. It is still a little inefficient in that the GetLightingLevel needs
to be evaluated up to 3 times. This could be improved as follows :

Select := GetLightingLevel("select");

if Select = 0 then

begin

 { do first thing }

end

else if Select = 1 then

begin

 { do second thing }

end

else if Select = 2 then

begin

 { do third thing }

end;

An alternative way is to use a Case Statement as follows :

case GetLightingLevel("select") of

 0 : begin

 { do first thing }

 end;

 1 : begin

 { do second thing }

 end;

 2 : begin

 { do third thing }

 end;
 end;

In general, if you are selecting between 4 or more values, you should use a case statement. If you
are selecting between 2 values, always use an if statement. For 3 values, you could choose either.

4.22.8 Repeat Statement

The syntax of a repeat statement is

repeat

 statement1;

 ...
 statementn;

until expression;

where expression returns a Boolean value. The last semicolon before "until" is optional. The repeat
statement executes its sequence of constituent statements continually, testing expression after
each iteration. When expression returns True, the repeat statement terminates. The sequence is
always executed at least once because expression is not evaluated until after the first iteration.

There is no need to use the begin/end keywords to group more than one program statement, as all
statements between repeat and until are treated as a block.

This loop is also called a posttest loop because the condition is tested AFTER the body of the loop
executes. The REPEAT loop is useful when you want the loop to execute at least once, no matter

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 164

what the starting value of the Boolean expression is, whereas the while loop statements may not get
executed at all.

4.22.9 While Statement

A while statement is similar to a repeat statement, except that the control condition is evaluated
before the first execution of the statement sequence. Hence, if the condition is false, the statement
sequence is never executed.

The syntax of a while statement is

while expression do

 statement;

where expression returns a Boolean value and statement can be a compound statement (ie starting
with "begin" and ending with "end;"). The while statement executes its constituent statement
repeatedly, testing expression before each iteration. As long as expression returns True, execution
continues.

The WHILE ... DO loop is also called a pretest loop because the condition is tested before the body
of the loop executes. So if the condition starts out as FALSE, the body of the while loop never
executes.

4.22.10 For Statement

A for statement, unlike a repeat or while statement, requires you to specify explicitly the number of
iterations you want the loop to go through. The syntax of a for statement is

for counter := InitialValue to FinalValue do

 statement;

or

for counter := InitialValue downto FinalValue do

 statement;

where

counter is a local variable (declared in the block containing the for statement) of ordinal type,
without any qualifiers.

InitialValue and FinalValue are expressions that are assignment-compatible with counter.
statement is a simple or structured statement that does not change the value of counter.

The for statement initially assigns the value of InitialValue to counter, then executes statement
repeatedly, incrementing or decrementing counter after each iteration. (The for...to syntax
increments counter, while the for...downto syntax decrements it.) When counter returns the same
value as FinalValue, statement is executed once more and the for statement terminates. In other
words, statement is executed once for every value in the range from InitialValue to FinalValue. If
InitialValue is equal to FinalValue, statement is executed exactly once. If InitialValue is greater than
FinalValue in a for...to statement, or less than FinalValue in a for...downto statement, then
statement is never executed. After the for statement terminates, the value of counter is undefined.

For purposes of controlling execution of the loop, the expressions InitialValue and FinalValue are
evaluated only once, before the loop begins. Hence the for...to statement is almost, but not quite,
equivalent to this while construction:

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 165

begin

 counter := initialValue;

 while counter <= finalValue do

 begin

 statement;

 counter := Succ(counter);

 end;

end

The difference between this construction and the for...to statement is that the while loop re-evaluates
FinalValue before each iteration. This can result in noticeably slower performance if FinalValue is a
complex expression, and it also means that changes to the value of FinalValue within statement can
affect execution of the loop.

You can use the counter in calculations within the body of the loop, but you should not change the
value of the counter. An example of using the counter is:

sum := 0;

for count := 1 to 100 do

 sum := sum + count;

A for loop can occur within another, so that the inner loop (which contains a block of statements) is
repeated by the outer loop. These are called "nested" loops. With nested loops :

1 Each loop must use a seperate variable
2 The inner loop must begin and end entirely within the outer loop.

Example

To find the maximum value in an array called Data :

Max := 0;

for I := 1 to 100 do

 if Data[I] > Max then

 Max := Data[I];

To count the number of Group Addresses in the range 10 to 30 which are on :

Count := 0;

for i := 10 to 30 do

 if GetLightingState(i) then

 Count := Count + 1;

4.22.11 Tutorial 7

Question 1

Write a program to display the first 10 triangle numbers. Triangle numbers are formed as follows :
The first is 1
The second is 1 + 2 = 3
The third is 1 + 2 + 3 = 4
etc

Question 2

Write a program to display the larger of two variables A and B.

Question 3

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 166

a, b, c and d are integers. What is displayed when the following is run ?

a := 5;
b := 3;
c := 99;
d := 5;
if a > 6 then writeln('A');
if a > b then writeln('B');
if b = c then
begin
 writeln('C');
 writeln('D')
end;
if b <> c then
 writeln('E')
else
 writeln('F');
if a >= c then
 writeln('G')
else
 writeln('H');
if a <= d then
begin
 writeln('I');
 writeln('J')
end;

Question 4

a, b and c are integers. What is displayed when the following is run ?

a := 5;
b := 3;
c := 99;
if (a = 5) or (b > 2) then writeln('A');
if (a < 5) and (b > 2) then writeln('B');
if (a = 5) and (b = 2) then writeln('C');
if (c <> 6) or (b > 10) then
 writeln('D')
else
 writeln('E');
if (b = 3) and (c = 99) then writeln('F');
if (a = 1) or (b = 2) then writeln('G');
if not((a < 5) and (b > 2)) then writeln('H');

Question 5

Write a Pascal statement to compare the character variable "Letter" to the character constant 'A',
and if less, prints the text string "Too low", otherwise print the text string "Too high"

Question 6

What will be displayed when the following is run ("i" is an integer) ?

i := 1;
repeat
 i := i * 2;
 WriteLn(i);
until i > 100;

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 167

Question 7

Convert the following statements to use case statements :

if i = 0 then WriteLn('A')
else if i = 1 then WriteLn('B')
else if i = 2 then WriteLn('C')
else if i = 3 then WriteLn('D');

Question 8

Write some code which counts how many times the "Bathroom Light" group address has been
switched on.

Question 9

Write some code to get the "Lounge Lamp" to go on and off when the "Lounge Light" goes on and
off.

Question 10

Write some code to control the "Bedroom Light" group from the "Bedroom Switch" group following
these rules :

The Bedroom Switch is an on/off (toggle) switch
If the time is after 9PM, then switch the bedroom lights to 70% over 4 seconds when the switch
goes on
Otherwise switch the bedroom lights to 100% when the switch goes on
Switch the bedroom lights off when the switch goes off

Question 11

Write some code to implement the following requirements :
A conference room has a moveable room divider with a sensor controlling the "Divider Closed" group.
A switch on the wall of room 1 controls the "Room 1 Switch" group. When the divider is closed,
toggling the room 1 switch should set the "Room 1 Off" and "Room 1 On" scenes. When the divider
is open, toggling the room 1 switch should set the "All Off" and "All On" scenes.

Question 12

Write some code to implement the following requirements :
When the outside PIR sensor on group "Outside PIR" is triggered between 9PM and midnight, the
lights in the three rooms "Room 1", "Room 2" and "Room 3" are to be switched on with a delay of
two seconds between each, to make it look like someone is home. When the PIR goes off, the
lights are to be returned to the levels they were initially at.

Question 13

Write some code to implement the following requirements :
A house requires a "lived in" look. The lights in four rooms "Room 1", "Room 2" "Room 3" and
"Room 4" are to be switched at random times subject to the following rules :

They are only to be on after sunset + 1 hour and before 11PM
There must always be one light on
Only one light may be on at a time
The lights must change every 5 – 20 minutes at random
The "lived in" look is to be enabled by a group called "away mode", set by the security system

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 168

Question 14

The code :
if time = "8:00PM" then
 SetScene("Night");

is not good because the Logic Engine could be run several times during the second where the time
is exactly 8PM, resulting in the Scene being set several times. Why is the following code OK :

if time = "8:00PM" then
begin
 SetScene("Night");
 Delay("3:00:00");
 SetScene("Bed Time");
end;

Question 15

What is wrong with the following lines of code (5 errors) :

if day = 14 and month = 7 and time = 9PM then
 SetLightingLevel(Kitchen Light, 100%)

Tutorial Answers

4.23 Sub-Programs

Procedures and functions (referred to collectively as Routines or Sub-Programs) are self-contained
statement blocks that can be called from different locations in a program. A function is a routine
which returns a value when it executes. A procedure is a routine which does not return a value.

Sub-programs are used to make code clearer, and to minimise having common bits of code written
several times. There are two types of sub-programs :

Procedures
Functions

4.23.1 Procedures

A procedure is a subprogram. Subprograms help reduce the amount of redundancy in a program.
Statements which appear several times in a program are often put into subprograms. Subprograms
also facilitate top-down design.

A procedure declaration has a form similar to a program :

procedure ProcedureName(Parameter List);

{ Local Declarations }

begin

 { statements }

end;

where ProcedureName is any valid identifier

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 169

statements is a sequence of statements that execute when the procedure is called, and
Parameter List and Local Declarations are optional (see below)

Parameter List

Most procedure and function headers include a parameter list. For example, in the header

procedure NumString(N: Integer; var S: string);

the parameter list is (N: Integer; var S: string).

If a routine does not take any parameters, omit the identifier list and the parentheses in its
declaration:

procedure UpdateRecords;

begin

 ...

end;

Within the procedure or function body, the parameter names (N and S in the first example above)
can be used as local variables. Do not re-declare the parameter names in the local declarations
section of the procedure or function body.

Local Declarations

Within a procedure's statement block, you can use variables and other identifiers declared in the
Local Declarations part of the procedure. You can also use the parameter names from the parameter
list (like N and S in the example above). The parameter list defines a set of local variables, so don't
try to re-declare the parameter names in the Local Declarations section. Finally, you can use any
identifiers within whose scope the procedure declaration falls.

Example

Here is an example of a procedure which sets all of the Group Addresses between Group1 and
Group2 to Level :

procedure SetLevels(Group1, Group2, Level : integer);

var

 i: integer;

begin

 for i := Group1 to Group2 do

 SetLightingLevel(i, Level);

end;

In the above example, the parameter list contains three integer variables : Group1, Group2 and Level.
These parameters are variables which can be used in the procedure. There is also another variable, i,
which is declared for use in the procedure. This variable can not be used anywhere else (for
example, other procedures or Modules).

Given this procedure declaration, you can call the SetLevels procedure to set all Groups between 10
and 30 to the new level 50% like this:

SetLevels(10, 30, 50%);

See also Forward Declarations

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 170

4.23.2 Parameters

Procedures may accept data (parameters) to work with when they are called. A parameter list is a
sequence of parameter declarations separated by semicolons and enclosed in parentheses. Each
declaration is a comma-delimited series of parameter names, followed by a colon and a type
identifier. Parameter names must be valid identifiers. Any declaration can be preceded by the
reserved word var. Examples:

(X, Y: Real)

(var S: string; X: Integer)

The parameter list specifies the number, order, and type of parameters that must be passed to the
routine when it is called.

Value Parameters

Generally, when variables are passed to procedures, the procedures work with a copy of the original
variable. The value of the original variables which are passed to the procedure are not changed. The
copy that the procedure makes can be altered by the procedure, but this does not alter the value of
the original. When procedures work with copies of variables, they are known as value parameters.

Consider the following code example,

procedure NoChange(letter : char; number : integer);

begin

 WriteLn(letter);

 WriteLn(number);

 letter := 'A'; {this does not alter MainLetter}

 number := 32; {this does not alter MainNumber}

 WriteLn(letter);

 WriteLn(number)

end;

{ var section }
 MainLetter : char; {these variables known only from here on}

MainNumber : integer;

{ Module section }

 mainletter := 'B';

 mainnumber := 12;

 WriteLn(MainLetter);

 WriteLn(MainNumber);

 NoChange(MainLetter, MainNumber);

 WriteLn(MainLetter);

 WriteLn(MainNumber)

In this case, the output of the code would be :

B { written from Module }
12 { written from Module }
B { written from NoChange }
12 { written from NoChange }
A { written from NoChange }
32 { written from NoChange }
B { written from Module }
12 { written from Module }

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 171

Variable parameters

Procedures can also be implemented to change the value of variables which are accepted by the
procedure. To illustrate this, we will develop a little procedure called swap. This procedure accepts
two integer values, swapping them over.

Procedures which accept value parameters cannot do this, as they only work with a copy of the
original values. To force the procedure to use variable parameters, precede the declaration of the
variables (inside the parenthesis after the function name) with the keyword var. This has the effect of
using the original variables, rather than a copy of them.

procedure SWAP (var value1, value2 : integer);

var
 temp : integer;

begin

 temp := value1;

 value1 := value2; { value1 is actually number1 }

 value2 := temp { value2 is actually number2 }

end;

{ var section }

number1, number2 : integer;

 { module section }

number1 := 10;

number2 := 33;

WriteLn('Number1 = ', number1,' Number2 = ', number2);

SWAP(number1, number2);

WriteLn('Number1 = ', number1,' Number2 = ', number2)

When this program is run, it prints out

Number1 = 10 Number2 = 33

Number1 = 33 Number2 = 10

Another example of the use of variable parameters is to return a String Type result. For example, the
following code returns a string of characters:

procedure StringOfChar(n : integer; c: char; var s : String);
var
 i : integer;
begin
 s := '';
 for i := 1 to n do
 Append(s, c);
end;

The following code will result in string MyString being set to 'xxxxx':

StringOfChar(5, 'x', MyString);

4.23.3 Functions

Functions work the same way as procedures, but they always return a value to the where they were
called from, separate from the variables passed to the function. A function declaration is like a
procedure declaration except that it specifies a return type. Function declarations have the form :

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 172

function FunctionName(ParameterList): ReturnType;

LocalDeclarations;

begin

 statements

end;

where FunctionName is any valid identifier
statements is a sequence of statements that execute when the function is called, and
ParameterList and LocalDeclarations are optional (see below)
ReturnType is the Type of the result returned by the function

The function's statement block is governed by the same rules that apply to procedures. Within the
statement block, you can use variables and other identifiers declared in the LocalDeclarations part of
the function, parameter names from the parameter list, and any identifiers within whose scope the
function declaration falls. In addition, the function name itself acts as a special variable that holds
the function's return value.

For example,

function WF: Integer;

begin

 WF := 17;

end;

defines a function called WF that takes no parameters and always returns the integer value 17.

Here is a more complicated function declaration which returns the maximum of three parameters :

function Max(A, B, C: Integer): integer;

begin

 Max := A;

 if B > Max then

 Max := B;

 if C > Max then
 Max := C;

end;

You can assign a value to the function name repeatedly within a statement block, as long as you
assign only values that match the declared return type. When execution of the function terminates,
whatever value was last assigned to the function name becomes the function's return value.

If execution terminates without an assignment being made to the function name, then the function's
return value is undefined.

If it is necessary for a function to return more than one value, then variable parameters need to be
used to modify variables from the calling block of code.

Note that functions can not return a String Type result. A string value can be set using a Variable
Parameter in a Procedure.

4.23.4 Blocks

A block consists of a series of declarations followed by a compound statement. All declarations
must occur together at the beginning of the block. So the form of a block is

declarations

begin

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 173

 statements

end

The declarations section can include, in any order, declarations for variables, constants, types,
procedures, functions. For example, in a function declaration like :

function Convert(const S: string): string;

var

 Ch: Char;

 L: Integer;

 Source, Dest: PChar;

begin

 ...

end;

the first line of the declaration is the function heading and all of the succeeding lines make up the
block. Ch, L, Source, and Dest are local variables; their declarations apply only to the Convert
function block and override (in this block only) any declarations of the same identifiers that may
occur in the program block.

4.23.5 Scope

A Block (program, procedure or function) can declare its own variables to work with. These variables
belong to the procedure in which they are declared. Where these variables can be used is called
their "scope".

An identifier, such as a variable or function name, can be used only within the scope of its
declaration. The location of a declaration determines its scope. An identifier declared within the
declaration of a program, function, or procedure has a scope limited to the block in which it is
declared. Identifiers with narrower scope (especially identifiers declared in functions and procedures)
are sometimes called local, while identifiers with wider scope are called global.

If the identifier is declared in the declaration of a program, function, or procedure, its scope extends
from the point where it is declared to the end of the current block, including all blocks enclosed
within that scope.

When one block encloses another, the former is called the outer block and the latter the inner block.
If an identifier declared in an outer block is re-declared in an inner block, the inner declaration
overrides the outer one and determines the meaning of the identifier for the duration of the inner
block. For example, if you declare a global variable called MaxValue in the program, and then
declare another variable with the same name in a function declaration within that program, any
occurrences of MaxValue in the function block are governed by the second, local declaration.
Similarly, a function declared within another function creates a new, inner scope in which identifiers
used by the outer function can be re-declared locally.

Example

Consider the program :

{ var section }

i, j : integer;

procedure Test;

var

 i : integer;

begin

 i := 23;

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 174

 WriteLn(i + j);

end;

{ Module section }

i := 3;

j := 4;

Test;

WriteLn(i + j);

When this program is run, it will write the value 27 then 7. There are two occurrences of the variable
i. There is a global variable j which is available to the main program and to the Test procedure. The
global variable i is available to the main program, but not to the Test procedure, since it has a local
variable called i. Within the Test procedure, any reference to the variable i will use the local one.

4.23.6 Recursion

Recursion is a difficult topic to grasp, and is generally not necessary for the purposes of automation
control.

Recursion means allowing a function or procedure to call itself. The summation function (which adds
all of the numbers between 1 and n) is a popular example of recursion:

function Summation (num : integer) : integer;

begin

 if num = 1 then

 Summation := 1

 else

 Summation := Summation(num-1) + num

end;

Suppose you call Summation with a value of 3 :

a := Summation(3);

Summation(3) becomes Summation(2) + 3.
Summation(2) becomes Summation(1) + 2.
At Summation(1), the recursion stops and the result is 1.
Summation(2) becomes 1 + 2 = 3.
Summation(3) becomes 3 + 3 = 6.
a becomes 6.

Recursion works backward until a given point is reached at which an answer is defined, and then
works forward with that definition, solving the other definitions which rely upon that one.

All recursive procedures/functions must have some sort of test so stop the recursion. Under one
condition, called the base condition, the recursion should stop. Under all other conditions, the
recursion should go deeper. In the example above, the base condition was if num = 1. If you don't
build in a base condition, the recursion will either not take place at all, or continue indefinitely and
cause a Run Time Error.

4.23.7 Forward Declarations

In the Scope section, it was stated that procedures/functions can only see variables and other
subprograms that have already been defined. There is an exception.

If you have two subprograms, each of which calls the other, you have a dilemma that no matter
which you put first, the other still can't be called from the first.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 175

To resolve this chicken-and-the-egg problem, use forward declarations :

procedure Later(parameter list); forward;

procedure Sooner(parameter list);

begin

 ...

 Later(parameter list);

end;

procedure Later(parameter list);

begin

 ...

 Sooner(parameter list);

end;

The same applies to functions. Just put the reserved word forward at the end of the declaration.

4.23.8 Tutorial 8

Question 1

Write a Pascal procedure called Multiply, which accepts two integers, number1 and number2, and
prints the result of multiplying the two integers together

Question 2

What is the output of the following Pascal program

 program Sample(output);
 var x, y : integer;

 procedure godoit(x, y : integer);
 begin
 x := y; y := 0;
 writeln(x, y);
 end;

 begin
 x := 1;
 x := 2;
 godoit(x, y);
 writeln(x, y)
 end.

Question 3

Write a Pascal function called Multiply2 which returns an integer result. The function accepts two
integer parameters, number1 and number2 and returns the value of multiplying the two parameters

Question 4

What is displayed by the following code :

{ procedures }
procedure test1(x : integer);
begin
 x := x + 1;

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 176

 WriteLn(x);
end;

procedure test2(var x : integer);
begin
 x := x + 1;
 WriteLn(x);
end;
{ … }
{ main program }
i := 2;
test1(i);
WriteLn(i);
test2(i);
WriteLn(i);

Question 5

What is wrong with this code (3 errors) :
begin
 x = x + 1;
end;

begin
 WriteLn('x = ' x);
end;

Tutorial Answers

4.24 Modules

Modules contain the main part of the user program. Modules separate the code in separate sections
to :

Place related parts of code together to make the code easier to understand
Enable a section of code to be enabled or disabled
Control which parts of the code gets suspended with a Delay or WaitUntil procedure

Modules are created with the Logic Editor. When the program is Compiled, a Pascal program is
generated containing the code from each module "wrapped" in some code to implement the
necessary features for Module operation. The Module code is also "wrapped" in a Repeat loop so
that the Modules get executed on a regular basis. The result is a Pascal program which looks a bit
like :

program LogicEngine;

begin

 { Initialisation Code goes here }

 repeat

 if ModuleEnabled("Module 1") then

 begin

 { Module 1 code goes here }

 end;

 if ModuleEnabled("Module 2") then

 begin

 { Module 2 code goes here }

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 177

 end;

 ...

 WaitFor200ms;

 until LogicEngineRunTimeError;

end.

The user does not have to get involved with the complexities of how Modules get enabled or
disabled. This is all handled by the compiler.

To an extent, Modules create behaviour a bit like a multi-tasking / multi-process / multi-threaded
system. The main difference being that each Module does not have its own memory - they all share
global Variables.

Although there are many benefits in modularizing your code, each additional Module does require
extra processing due to the "wrapping" process described above. For example, creating hundreds of
separate Modules, each with just a few lines of code would be very inefficient.

For each scan, the Modules all get executed one after the other, in the order that they are listed in
the Logic Tree. Any Modules which are Disabled or are Delayed are skipped until they are Enabled
again.

There are several functions used for controlling the behaviour of Modules :
Delay Procedure
EnableModule Procedure
DisableModule Procedure
ExitModule Procedure
ModuleDisabled Function
ModuleEnabled Function
ModuleWaiting Function
WaitUntil Procedure

Note that the InitialisationCode only gets executed once - when the program first runs.

See also Software Limits and Program Execution

4.24.1 Module Tags

Modules can be referred to by Tags which correspond to the name of the Module in the Logic Editor.
The tag will be the Module name enclosed within double quotes.

Example

"Pool Control"

4.24.2 Module Groups

Modules can be arranged into groups for convenience using the Logic Editor. The Module Groups do
not affect the generation of the code in any way, they are just there to allow related Modules to be
grouped together so that they can be found easily.

4.24.3 Initialisation

The initialisation code is code which only gets executed when the logic engine is first run. It is used
for initialising variables and any other actions which do not need to be executed for every scan of the

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 178

Logic Engine.

Note that when the Logic Engine is first run, all variables are initialised to the following values :
Integer Type : 0
Real Type : 0.0
Boolean Type : false
Char Type : NULL (ASCII 0)
String Type : '' (empty string)

For example, to set the initial value of the variable CounterValue to 1, the code in the initialisation
section would be :

CounterValue := 1;

See also Using Counters.

4.24.4 Delay Procedure

The Delay procedure suspends the current Module for a specified amount of time.

Syntax

Delay(t);

t is an Real number or Time Tag

Description

This suspends (pauses) the current Module for t seconds. At the end of this time, processing of the
rest of the Module will continue. It has no effect on any other Modules.

Notes

Delays can only be used within Modules, not within Functions, Procedures or the Initialisation
sections.

The minimum delay is 0.2 seconds.

See Program Execution for details of what happens during a delay.

Example

To delay for 0.2 seconds :
Delay(0.2);

To delay for 1 hour :
Delay("1:00:00");

To switch on the Porch Light, wait for 10 minutes and then switch it off again :
SetLightingGroup("Porch Light", on);

Delay("0:10:00");

SetLightingGroup("Porch Light", off);

In the above example, the Module in which this code exists will wait at the line with the delay until
the delay is complete. When the delay is complete, the Module execution will continue from the line
after the delay.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 179

Note

A delay of zero will cause a Run Time Error. Hence do not write code like this :

Delay(random("1:00:00"));

since the random function could return a value of zero. A simple way to solve this would be to have :

Delay(random("1:00:00") + 1);

See also Random Event Times and Program Execution

4.24.5 EnableModule Procedure

The EnableModule procedure enables the selected Module.

Syntax

EnableModule(ModuleNumber);

ModuleNumber is an integer or Module Tag.

Description

This enables the selected Module. It has no effect on any other Modules. Note that the index of the
first Module is 0, not 1.

If the selected Module occurs later in the sequence of Modules (see Program Execution), then the
re-enabled Module will be executed on the current scan. If the Module occurs earlier in the sequence
of Modules, then the re-enabled Module will be executed on the next scan. The re-enabled Module
will run from the first line of code the next time it is run.

Enabling a Module will cancel any WaitUntil statements which are in progress (if the module is
already enabled), but has no effect on Delays.

Example

To enable Module number 1 (the second one in the list) :
EnableModule(1);

To enable the Module called "Pool Control" :
EnableModule("Pool Control");

See also Program Execution

4.24.6 ExitModule Procedure

The ExitModule procedure causes the Module code to be terminated.

Syntax

ExitModule;

Description

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 180

This causes the code execution to leave the current Module and go to the next Module in the list.
Processing of the current Module will continue from the first line of the Module on the next scan. It
has no effect on any other Modules.

Example

To exit the current Module if the variable n is zero :
if n = 0 then ExitModule;

4.24.7 DisableModule Procedure

The DisableModule procedure disables the selected Module.

Syntax

DisableModule(ModuleNumber);

ModuleNumber is an integer or Module Tag.

Description

This disables the selected Module. The Module will not be run again until the Module is re-enabled. It
has no effect on any other Modules. If a Module disables itself using this command, the rest of the
Module will be executed, but it will not be run again until re-enabled.

Note that the index of the first Module is 0, not 1.

Example

To disable Module number 1 (the second one in the list) :
DisableModule(1);

To disable the Module called "Pool Control"
DisableModule("Pool Control");

See also Program Execution

4.24.8 ModuleDisabled Function

The ModuleDisabled function returns whether the selected Module is disabled.

Syntax

ModuleDisabled(ModuleNumber)

ModuleNumber is an integer or Module Tag.

Description

A module can be enabled, disabled or waiting. The ModuleDisabled function returns a boolean value
with the enable state (true/false) of the selected Module. The result is true if the module is disabled.
The result is false if it is enabled or waiting for a Delay or a WaitUntil.

Note that the index of the first Module is 0, not 1.

Example

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 181

To assign the enable state of Module number 1 (the second one in the list) to a variable called State
:

State := not ModuleDisabled(1);

To perform an action if the Module called "Pool Control" is disabled :
if ModuleDisabled("Pool Control") then ...

4.24.9 ModuleEnabled Function

The ModuleEnabled function returns whether the selected Module is enabled.

Syntax

ModuleEnabled(ModuleNumber)

ModuleNumber is an integer or Module Tag.

Description

A module can be enabled, disabled or waiting. The ModuleEnabled function returns a boolean value
with the enable state (true/false) of the selected Module. The result is true if the module is enabled
and running. The result is false if it is disabled or waiting for a Delay or a WaitUntil.

Note that the index of the first Module is 0, not 1.

Example

To assign the enable state of Module number 1 (the second one in the list) to a variable called State
:

State := ModuleEnabled(1);

To perform an action if the Module called "Pool Control" is enabled :
if ModuleEnabled("Pool Control") then ...

4.24.10 ModuleWaiting Function

The ModuleWaiting function returns whether the selected Module is waiting in a Delay or a
WaitUntil.

Syntax

ModuleWaiting(ModuleNumber)

ModuleNumber is an integer or Module Tag.

Description

A module can be enabled, disabled or waiting. The ModuleWaiting function returns a boolean value
with the waiting state (true/false) of the selected Module. The result is true if the module is waiting
for a Delay or a WaitUntil. The result is false if it is disabled or enabled.

Note that the index of the first Module is 0, not 1.

Example

To assign the waiting state of Module number 1 (the second one in the list) to a variable called State

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 182

:
State := ModuleWaiting(1);

To perform an action if the Module called "Pool Control" is waiting :
if ModuleWaiting("Pool Control") then ...

4.24.11 WaitUntil Procedure

The WaitUntil procedure suspends the current Module until a condition is true.

Syntax

WaitUntil(BooleanCondition);

BooleanCondition is a Boolean expression.

Description

This suspends the current Module (in the same way as a Delay) until the Boolean Condition is true.
The Boolean Condition is evaluated each scan. Once the condition is true, processing of the Module
will continue. It has no effect on any other Modules.

Note that the WaitUntil procedure can only be used within Modules, not within Functions,
Procedures or the Initialisation sections.

Example

To wait until the EnableFlag variable is true :
WaitUntil(EnableFlag);

To wait until the time is 9:00 AM :
WaitUntil(Time = "9:00:00");

To wait until the Kitchen light goes on :
WaitUntil(GetLightingState("Kitchen"));

See also Program Execution

4.24.12 Tutorial 9

Question 1

Write some code to switch on the "Porch Light" at 7:00 PM and off at 11:00PM. Write the code in
three versions :

Using a Delay procedure
Using a WaitUntil procedure
Using neither

Question 2

Write some code to disable "Module 2" when a variable called Counter reaches 100m and re-enable
the Module when the counter drops below 50.

Tutorial Answers

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 183

4.25 Graphics

Most of the time, the standard PICED components can be used to provide the necessary visual
information for the user. If needed, the Logic Engine can "draw" graphics over the top of the PICED
image.

It is usually necessary to check which page is Showing before drawing any graphics.

When a graphic function is executed (with the exception of ClearScreen), it is added to the Graphics
Commands List. This is a list of "things to draw" when PICED has completed drawing its images.
The Graphics Commands List can be viewed in the Logic Editor to ensure that they are correct.

There are a series of functions for drawing graphics :
ClearScreen Procedure
DrawImage Procedure
DrawText Procedure
DrawTextBlock Procedure
Ellipse Procedure
LineTo Procedure
MoveTo Procedure
Rectangle Procedure
RoundRect Procedure
SetBrushColor Procedure
SetBrushStyle Procedure
SetFontColor Procedure
SetFontName Procedure
SetFontSize Procedure
SetFontStyle Procedure
SetPenColor Procedure
SetPenStyle Procedure
SetPenWidth Procedure
TextPos Procedure

There are also functions for determining where the screen has been clicked :
GetClick Function
GetClickX Function
GetClickY Function

The following Constants can also be used for graphics :
ScreenWidth - this is the width of the screen in pixels
ScreenHeight - this is the height of the screen in pixels

4.25.1 Coordinates

The graphics routines use the top left corner of the window as the origin (0, 0). Hence increasing
values for the vertical value are going down the screen.

Examples of screen coordinates are shown below :

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 184

4.25.2 Colours

The Colour of the Brush and the Pen can be set for use with the graphic procedures.

A Colour is specified as an Integer, but for convenience, Hexadecimal notation is simplest to use.
The colour is a 3-byte hexadecimal number, with the three bytes represent RGB colour intensities
for blue, green, and red, respectively. Constants are defined for the common colours.

Examples

Value Colour Constant

$FF0000 pure blue clBlue

$00FF00 pure green clGreen

$0000FF pure red clRed

$000000 black clBlack

$FFFFFF white clWhite

$FFFF00 cyan clCyan

$FF00FF magenta clMagenta

$00FFFF yellow clYellow

$808080 grey clGray

4.25.3 ClearScreen Procedure

The ClearScreen procedure clears the Graphics Commands List.

Applicability

Colour C-Touch only.

Syntax

ClearScreen;

Description

Any commands which are in the Graphics Commands List are deleted. The graphics properties are
reset to their defaults :

Pen Colour and Style
Brush Colour and Style
Font Colour, Name, Size and Style

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 185

4.25.4 DrawImage Procedure

The DrawImage procedure draws an image on the screen.

Applicability

Colour C-Touch only.

Syntax

DrawImage(X, Y, ImageNumber, Transparent);

X and Y are Integers
ImageNumber is an Integer or Image Name Tag
Transparent is a Boolean expression

Description

This draws image ImageNumber on the screen at a position (X, Y). If Transparent is true, then the
image background will be transparent. In this case, the colour of the bottom left pixel of the bitmap
(doesn't work for JPEGs) is used as the transparent colour. Only images used in the project can be
used. The name of the image is used as a Tag to identify the image.

Note that this will not work with animated images.

Example

To draw the transparent image "light bulb.bmp" at coordinate (100, 200) on the screen :
DrawImage(100, 200, "light bulb.bmp", true);

In Colour C-Touch, there is only a limited amount of RAM (see the "Show Usage" feature of the log
to find out how much). Attempting to use too many images may cause the Colour C-Touch to run
out of memory. Note that a full-screen image will use nearly 1MB of memory, regardless of whether
it is a JPEG, Bitmap or other file type.

4.25.5 DrawText Procedure

The DrawText procedure draws text on the screen.

Applicability

Colour C-Touch only.

Syntax

DrawText(Argument_List);

Argument_List is a list of expressions

Description

This writes text to the screen at a position set by the TextPos procedure. The format of the
argument list is the same as for the WriteLn procedure. The font used can be set using the
SetFontColor, SetFontName, SetFontSize and SetFontStyle procedures.

Example

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 186

To write the string 'hello' to the screen at coordinates 300,200 :
TextPos(300, 200);

DrawText('hello');

To write the value of variable LightLevel to the screen :
DrawText(LightLevel);

To write the value of variable Temperature with 1 decimal place to the screen :
DrawText(Temperature:4:1, 'C');

4.25.6 DrawTextBlock Procedure

The DrawTextBlock procedure draws text on the screen within a rectangular area.

Applicability

Colour C-Touch only.

Syntax

DrawTextBlock(Text, Left, Top, Right, Bottom, Alignment);

Text is a String
Left, Top, Right, Bottom and Alignment are integers

Description

This writes text to the screen within the area bounded by points (Left, Top) and (Right, Bottom). The
font used can be set using the SetFontColor, SetFontName, SetFontSize and SetFontStyle
procedures.

The alignment of the text within the rectangle is defined by the Alignment parameter, which can have
the values shown in the table below.

Constant Meaning

alLeft Text is written in a block, aligned to the left

alCenter Text is written in a block, aligned to the middle

alRight Text is written in a block, aligned to the right

alLineTop Text is written in a single line, aligned to the top

alLineCenter Text is written in a single line, aligned to the middle

alLineBottom Text is written in a single line, aligned to the bottom

A horizontal and a vertical constant can be combined. Any other values may give unpredictable
results and should be avoided. Examples of results of the different alignments are shown below.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 187

Examples

To write the text in variable WarningMessage in a block (lines "wrapped") with the text centre-aligned
within the area :

Left = 100
Top = 100
Right = 300
Bottom = 200

TextBlock(WarningMessage, 100, 100, 300, 200, alCenter);

To write the text 'Middle' in the middle of the screen :

TextBlock('Middle', 0, 0, ScreenWidth, ScreenHeight, alCenter +
alLineCenter);

See also TextHeight Function, TextWidth Function

4.25.7 Ellipse Procedure

The Ellipse procedure draws an ellipse or circle on the screen.

Applicability

Colour C-Touch only.

Syntax

Ellipse(Left, Top, Bottom, Right);

Left, Top, Bottom and Right are Integers

Description

This draws the ellipse defined by a bounding rectangle on the screen. If the bounding rectangle is a
square, a circle is drawn.

The ellipse is outlined using the value of the Pen, and filled using the value of the Brush. The Pen
can be set using the SetPenColor, SetPenStyle, and SetPenWidth procedures. The Brush can be

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 188

set using the SetBrushColor and SetBrushStyle procedures.

Example

To draw an ellipse from coordinate (100, 100) to coordinate (300, 200) on the screen :
Ellipse(100, 100, 300, 200);

To draw a circle of diameter 50 centred on coordinate (300, 200) on the screen :
Ellipse(250, 150, 350, 250);

4.25.8 LineTo Procedure

The LineTo procedure draws a line on the screen.

Applicability

Colour C-Touch only.

Syntax

LineTo(X, Y);

X and Y are Integers

Description

Use LineTo to draw a line from the current pen position (set using MoveTo or a previous LineTo) up
to, but not including the point (X,Y). LineTo changes the value of the current Pen position to (X,Y).

The line is drawn using the Pen. The Pen can be set using the SetPenColor, SetPenStyle, and
SetPenWidth procedures.

Example

To draw an line from the current pen position to coordinate (300, 200) on the screen :
LineTo(300, 200);

4.25.9 MoveTo Procedure

The MoveTo procedure sets the Pen Position.

Applicability

Colour C-Touch only.

Syntax

MoveTo(X, Y);

X and Y are Integers

Description

Use MoveTo to set the current Pen position to point (X,Y). This is needed before using LineTo.

Example

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 189

To move the current pen position to coordinate (300, 200) on the screen :
MoveTo(300, 200);

4.25.10 Rectangle Procedure

The Rectangle procedure draws a rectangle or square on the screen.

Applicability

Colour C-Touch only.

Syntax

Rectangle(Left, Top, Right, Bottom);

Left, Top, Right and Bottom are Integers

Description

The rectangle is outlined using the value of the Pen, and filled using the value of the Brush. The Pen
can be set using the SetPenColor, SetPenStyle, and SetPenWidth procedures. The Brush can be
set using the SetBrushColor and SetBrushStyle procedures.

Example

To draw a rectangle from coordinate (100, 100) to coordinate (300, 200) on the screen :
Rectangle(100, 100, 300, 200);

To draw a square of width 100 centred on coordinate (300, 200) on the screen :
Rectangle(250, 150, 350, 250);

4.25.11 RoundRect Procedure

The RoundRect procedure draws a rounded rectangle or square on the screen.

Applicability

Colour C-Touch only.

Syntax

RoundRect(Left, Top, Right, Bottom, Radius);

Left, Top, Right, Bottom and Radius are Integers

Description

The RoundRect procedure draws a rectangle or square with rounded corners having a specified
Radius.

The rounded rectangle is outlined using the value of the Pen, and filled using the value of the Brush.
The Pen can be set using the SetPenColor, SetPenStyle, and SetPenWidth procedures. The Brush
can be set using the SetBrushColor and SetBrushStyle procedures.

Example

To draw a rounded rectangle from coordinate (100, 100) to coordinate (300, 200), with a radius of 10 :

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 190

RoundRect(100, 100, 300, 200, 10);

To draw a rounded square of width 100 centred on coordinate (300, 200), with a radius of 20 :
RoundRect(250, 150, 350, 250, 20);

4.25.12 SetBrushColor Procedure

The SetBrushColor procedure sets the colour of the brush used for drawing solid shapes on the
screen.

Applicability

Colour C-Touch only.

Syntax

SetBrushColor(c);

c is an Integer

Description

The SetBrushColor procedure sets the colour to be used for filling Rectangles, Round Rectangles
and Ellipses.

See the Colours topic for details of specifying colours.

Example

To set the brush colour to blue :
SetBrushColor(clBlue);

4.25.13 SetBrushStyle Procedure

The SetBrushStyle procedure sets the style of the brush used for drawing solid shapes on the
screen.

Applicability

Colour C-Touch only.

Syntax

SetBrushStyle(s);

s is an Integer

Description

The SetBrushStyle procedure sets the style to be used for filling Rectangles, Round Rectangles and
Ellipses. The styles are as follows :

Value Brush Style Constant
0 Solid (default) bsSolid
1 Clear bsClear
2 Horizontal bsHorizontal

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 191

3 Vertical bsVertical
4 Backwards Diagonal bsBDiagonal
5 Forwards Diagonal bsFDiagonal
6 Cross bsCross
7 Diagonal Cross bsDiagCross

For the backgrounds with lines, the lines are drawn in the Brush Colour.

Example

To set the brush style to horizontal lines :
SetBrushStyle(bsHorizontal);

4.25.14 SetFontColor Procedure

The SetFontColor procedure sets the colour of the font.

Applicability

Colour C-Touch only.

Syntax

SetFontColor(c);

c is an Integer

Description

The SetFontColor procedure sets the colour to be used for writing Text on the screen. The
background of the text is drawn in the Brush Colour.

See the Colours topic for details of specifying colours.

Example

To set the font colour to blue :
SetFontColor(clBlue);

4.25.15 SetFontName Procedure

The SetFontName procedure sets the name of the font.

Applicability

Colour C-Touch only.

Syntax

SetFontName(FontName);

FontName is a String

Description

The SetFontName procedure sets the name of the font to be used for writing Text on the screen.
Font names can be found by running any program which uses fonts and look at the list of fonts

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 192

available. If you have not selected a font name, 'Arial' will be used.

For example, in PICED, select the Default Font button on the Toolbar. Click the Select Other
Fonts button. In the Font list, you will see the names of all fonts which can be used.

For colour C-Touch projects, you will need to either use one of the colour C-Touch pre-installed fonts
(Arial, Courier New, System, Tahoma, Times New Roman, Webdings and Wingdings) or include
your selected font in the transfer archive.

Example

To set the font name to Courier New :
SetFontName('Courier New');

4.25.16 SetFontSize Procedure

The SetFontSize procedure sets the size of the font.

Applicability

Colour C-Touch only.

Syntax

SetFontSize(n);

n is an Integer

Description

The SetFontSize procedure sets the size of the font to be used for writing Text on the screen.

Example

To set the font size to 12 (the default) :
SetFontSize(12);

4.25.17 SetFontStyle Procedure

The SetFontStyle procedure sets the style of the font.

Applicability

Colour C-Touch only.

Syntax

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 193

SetFontStyle(n);

n is an Integer

Description

The SetFontStyle procedure sets the style of the font to be used for writing Text on the screen. The
value of n is the sum of the various style options required :

Value Style Constant

1 Bold fsBold

2 Italics fsItalic

4 Underline fsUnderline

8 Strikeout fsStrikeout

To get a combination of styles, add the values together.

Example

To set the font to standard (bold etc is off) :
SetFontStyle(0);

To set the font to bold :
SetFontStyle(fsBold);

To set the font to bold italics :
SetFontStyle(fsBold + fsItalic);

4.25.18 SetPenColor Procedure

The SetPenColor procedure sets the colour of the pen used for drawing lines and the outline of solid
shapes on the screen.

Applicability

Colour C-Touch only.

Syntax

SetPenColor(c);

c is an Integer

Description

The SetPenColor procedure sets the colour to be used for drawing Lines and the outline of
Rectangles, Round Rectangles and Ellipses.

See the Colours topic for details of specifying colours.

Example

To set the pen colour to blue :
SetPenColor(clBlue);

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 194

4.25.19 SetPenStyle Procedure

The SetPenStyle procedure sets the style of the pen used for drawing lines and the outline of solid
shapes on the screen.

Applicability

Colour C-Touch only.

Syntax

SetPenStyle(s);

s is an Integer

Description

The SetPenStyle procedure sets the style to be used for drawing Lines and the outline of
Rectangles, Round Rectangles and Ellipses. The styles are as follows :

Value Pen Style Constant

0 Solid (default) psSolid

1 Dash psDash

2 Dot psDot

3 Dash Dot psDashDot

4 Dash Dot Dot psDashDotDot

5 None (no line drawn) psClear

Note that for dotted and dashed lines, the pen width must be 1. For these lines, the "spaces" in the
line are drawn in the Brush Colour.

Example

To set the pen style to dashes :
SetPenStyle(psDash);

4.25.20 SetPenWidth Procedure

The SetPenWidth procedure sets the width of the pen used for drawing lines and the outline of solid
shapes on the screen.

Applicability

Colour C-Touch only.

Syntax

SetPenWidth(w);

w is an Integer

Description

The SetPenWidth procedure sets the width of the Pen to be used for drawing Lines and the outline
of Rectangles, Round Rectangles and Ellipses.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 195

Example

To set the pen width to 2 :
SetPenWidth(2);

4.25.21 TextHeight Function

The TextHeight function returns the height of some text.

Applicability

Colour C-Touch only.

Syntax

TextHeight(text)

text is a String

Description

Use the TextHeight function to obtain the height of some text (in pixels) when drawn in the current
font (as set by the SetFontName, SetFontSize and SetFontStyle procedures).

Example

To draw the text in string WarningMessage at the left centre (vertically) of the screen :
TextPos(0, (ScreenHeight - TextHeight(WarningMessage)) div 2);

DrawText(WarningMessage);

See also TextWidth Function, DrawTextBlock Procedure

4.25.22 TextPos Procedure

The TextPos procedure sets the position for writing Text on the screen.

Applicability

Colour C-Touch only.

Syntax

TextPos(X, Y);

X and Y are Integers

Description

Use TextPos to set the text position to coordinate (X,Y). This is needed before using the DrawText
Procedure.

Example

To set the text position to coordinate (300, 200) on the screen :
TextPos(300, 200);

See also TextHeight Function, TextWidth Function

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 196

4.25.23 TextWidth Function

The TextWidth function returns the width of some text.

Applicability

Colour C-Touch only.

Syntax

TextWidth(text)

text is a String

Description

Use the TextWidth function to obtain the width of some text (in pixels) when drawn in the current font
(as set by the SetFontName, SetFontSize and SetFontStyle procedures).

Example

To draw the text in string WarningMessage at the top centre of the screen :
TextPos((ScreenWidth - TextWidth(WarningMessage)) div 2, 0);

DrawText(WarningMessage);

See also TextHeight Function, DrawTextBlock Procedure

4.25.24 GetClick Function

The GetClick function returns whether the user has clicked the screen.

Applicability

Colour C-Touch only.

Syntax

GetClick

Description

The GetClick function returns a boolean value indicating whether the screen has been clicked since
the last scan. If the PICED page has changed since the click, then GetClick will return false,
otherwise you may think that the user has clicked on the new page, which is not the case. This
means that if the user clicks on a button which changes the page, the GetClick function will always
return false.

Example

4.25.25 GetClickX Function

The GetClickX function returns the X coordinate of the last screen click.

Applicability

Colour C-Touch only.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 197

Syntax

GetClickX

Description

The GetClickX function returns an integer value with the X coordinate of the most recent click on the
screen. The GetClick Function will return whether the screen has been clicked, and hence whether
the GetClickX data is valid.

Example

4.25.26 GetClickY Function

The GetClickY function returns the Y coordinate of the last screen click.

Applicability

Colour C-Touch only.

Syntax

GetClickY

Description

The GetClickY function returns an integer value with the Y coordinate of the most recent click on the
screen. The GetClick Function will return whether the screen has been clicked, and hence whether
the GetClickY data is valid.

Example

4.25.27 Click Example

Some logic needs to know whether the user has clicked on the rectangular area of the screen bound
by the points (left, top) and (right, bottom). To determine whether the region of the screen has been
clicked by the user, and if so, set a scene :

if GetClick then
begin
 if (GetClickX >= Left) and (GetClickX <= Right) and (GetClickY >= Top) and
(GetClickY <= Bottom) then
 SetScene("All On");
end;

4.26 Serial IO

It is possible to read from and write to serial ports from the Logic Engine. This enables interfaces to
many automation and Audio/Visual products to be created.

Up to four serial ports can be used simultaneously. The serial ports are referred to by their index (1 -

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 198

4) which is not the same as the COM Port number. For example, serial port number (index) 1 could
be COM Port 5.

The functions included for the support of serial ports are :
CloseSerial Procedure
OpenSerial Procedure
ReadSerial Procedure
WriteSerial Procedure
SetSerialDTR Procedure
SetSerialRTS Procedure

Notes

Serial ports must be opened before they can be used. The serial port should be opened in the
Initialisation section of the code.

The WriteSerial procedure does not wait until the command has been sent before continuing with the
next line of code. Hence the following code will most probably result in the ReplyString being empty,
as there will not be enough time for the TransmitString to be sent, let alone for a reply to have been
received :

WriteSerial(2, TransmitString);

ReadSerial(2, ReplyString, #13#10);

if ReplyString <> '' then

begin

 ...

The preferred way would be something like :

WriteSerial(2, TransmitString);

delay(1);

ReadSerial(2, ReplyString, #13#10);

if ReplyString <> '' then

begin

 ...

Because delays can not be used in the initialisation section, this code can not be used there. It can
only be used in a module.

See also Serial IO Examples and UTF-8 Example

Logic serial messages can be shown with the Show Logic Serial Messages option on the Log.
The log will show the data in the receive buffer at the start of each scan. If the data from the serial
port is not read, then the buffer will not be cleared and the data will keep being logged.

4.26.1 CloseSerial Procedure

The CloseSerial procedure closes a serial port.

Applicability

Colour C-Touch and Black & White C-Touch only.

Syntax

CloseSerial(SerialPortIndex);

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 199

SerialPortIndex is an Integer

Description

This closes the serial port number SerialPortIndex (1 - 4) and makes it available to be re-used. This
procedure should rarely need to be used.

Example

To close serial port number 2 :
CloseSerial(2);

4.26.2 OpenSerial Procedure

The OpenSerial procedure opens a serial port.

Applicability

Colour C-Touch, Black & White C-Touch and PAC only.

Syntax

OpenSerial(SerialPortIndex, COMPortNo, BaudRate, DataBits, StopBits,
FlowControl, Parity);

SerialPortIndex, COMPortNo, BaudRate, DataBits, StopBits, FlowControl and Parity are Integers

Description

This opens the serial port number SerialPortIndex (1 - 4) with the following properties :
COMPortNo is the PC COM Port number
BaudRate is the baud rate (in bits per second)
DataBits is the number of data bits (5 to 8)
StopBits is the number of stop bits (0 = 1.5 stop bits, 1 = one stop bit, 2 = two stop bits)
FlowControl (0 = none, 1 = hardware flow control, 2 = software flow control)
Parity (0 = none, 1 = odd, 2 = even, 3 = mark, 4 = space)

For use with the Pascal Automation Controller, there are the following limitations :
SerialPortIndex is the User Port number (1 or 2)
COMPortNo is the User Port number (1 or 2)
BaudRate is limited to 600, 1200, 2400, 4800, 9600, 19200, 38400
DataBits is limited to 7 or 8
StopBits is limited to 1 (= one stop bit) or 2 (= two stop bits)
FlowControl is not used
Parity options are limited to 0 (= none), 1 (= odd) or 2 (= even)

For use with the C-Touch Mark 2 or C-Touch Spectrum, there are the following limitations :
SerialPortIndex can only be 1
COMPortNo can only be 1
BaudRate is limited to 600, 1200, 2400, 4800, 9600, 19200, 38400
DataBits is limited to 7 or 8
StopBits is limited to 1 (= one stop bit) or 2 (= two stop bits)
FlowControl is not used
Parity options are limited to 0 (= none), 1 (= odd) or 2 (= even)

With the Colour C-Touch, you can only use COM Port number 1.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 200

The following constants have been defined for use with opening a serial port :

Value Meaning Constant Name

0 1.5 Stop Bits scOneAndHalfStopBits

1 1 Stop Bit scOneStopBit

2 2 Stop Bits scTwoStopBits

0 No Flow Control scNoFlowControl

1 Hardware Flow Control scHardwareFlowControl

2 Software Flow Control scSoftwareFlowControl

0 No Parity scNoParity

1 Odd Parity scOddParity

2 Even Parity scEvenParity

3 Mark Parity scMarkParity

4 Space Parity scSpaceParity

Example

To open serial port number 1, with COM Port 4, 9600 baud, 8 data bits, 1 stop bit, no flow control,
no parity :

OpenSerial(1, 4, 9600, 8, 1, 0, 0);

OR
OpenSerial(1, 4, 9600, 8, scOneStopBit, scNoFlowControl, scNoParity);

See also IsCBusUnit Function

4.26.3 ReadSerial Procedure

The ReadSerial procedure reads data from a serial port.

Applicability

Colour C-Touch, Black & White C-Touch and PAC only.

Syntax

ReadSerial(SerialPortIndex, DataString, Terminator);

SerialPortIndex is an Integer
DataString is a String variable
Terminator is a String expression

Description

This reads received data from the serial port number SerialPortIndex (1 - 4). The Terminator is used
to determine where one string ends and the next commences. Typically, the Terminator will be a
Carriage Return / Line Feed pair. The result (not including the Terminator) is stored in the DataString
variable.

If the Terminator is a null string, the whole of the received string will be placed in the DataString.

Received strings are placed in a buffer until they are read by the user using the ReadSerial
procedure. If the buffer exceeds 10,000 bytes (1000 bytes for PAC), the newest data will be ignored
(i.e. lost). The ReadSerial procedure just reads whatever is currently in the buffer. It does not wait
until there is data to be read.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 201

Example

To read a string from serial port number 2 which will be terminated by a Carriage Return (ASCII
#13) / Line Feed (ASCII #10) pair :

ReadSerial(2, s, #13#10);

To read all received data from serial port number 1 :
ReadSerial(1, s, '');

To keep reading any received strings in the buffer until there are none left :
repeat

 ReadSerial(2, s, #13#10);

 if s <> '' then

 begin

 ...

 end;

until s = '';

4.26.4 WriteSerial Procedure

The WriteSerial procedure sends data to a serial port.

Applicability

Colour C-Touch, Black & White C-Touch and PAC only.

Syntax

WriteSerial(SerialPortIndex, DataString);

SerialPortIndex is an Integer
DataString is a String

Description

This writes data to the serial port number SerialPortIndex (1 - 4). Note that the data gets stored in a
buffer and is sent out as a "background" process. If the buffer exceeds 10,000 bytes (1000 bytes for
PAC), the newest data will be ignored.

Example

To write a string s to serial port number 2 :
WriteSerial(2, s);

To write the string 'stop' terminated with a carriage return character to serial port 1 :
WriteSerial(1, 'stop'#13);

4.26.5 SetSerialDTR Procedure

The SetSerialDTR procedure sets the serial port Data Terminal Ready (DTR) line state.

Applicability

Colour C-Touch only.

Syntax

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 202

SetSerialDTR(SerialPortIndex, State);

SerialPortIndex is an Integer
State is Boolean

Description

This sets the serial port Data Terminal Ready (DTR) line for the serial port number SerialPortIndex (1
- 4). For an RS232 serial port, when State is true, the DTR line will be set to a negative voltage.

4.26.6 SetSerialRTS Procedure

The SetSerialRTS procedure sets the serial port Request To Send (RTS) line state.

Applicability

Colour C-Touch only.

Syntax

SetSerialRTS(SerialPortIndex, State);

SerialPortIndex is an Integer
State is Boolean

Description

This sets the serial port Request To Send (RTS) line for the serial port number SerialPortIndex (1 -
4). For an RS232 serial port, when State is true, the RTS line will be set to a negative voltage.

4.26.7 Serial IO Examples

The first step in using serial IO to control a device is to obtain the serial protocol for the device.
Generally this information is available in the instruction manual for the device or it can be obtained
from the manufacturer's web site.

Understanding and Testing the Device Protocol

Sometimes it may not be clear whether the format of the protocol uses ASCII characters or not (see
examples below). It is critical to ensure that you have a sufficient understanding of the protocol
before you start writing logic code. See Debugging Serial for information on how to do this.

Example 1 - ASCII Based Protocol

The simplest serial protocols use readable ASCII text. For example, an audio amplifier may have
several commands :

Command Format Response
Set Source Source=<Source><CR><LF>

<Source> = 0 to 4
OK<CR><LF> (if command succeeds)
FAIL<CR><LF> (if the command fails)

Set Volume Level Volume=<Level><CR><LF>
<Level> = 0 to 100
0 = -50dB
100 = 0dB

OK<CR><LF> (if command succeeds)
FAIL<CR><LF> (if the command fails)

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 203

Set Bass Level Bass=<Level><CR><LF>
<Level> = 0 to 100
0 = -10dB
50 = 0dB
100 = +10dB

OK<CR><LF> (if command succeeds)
FAIL<CR><LF> (if the command fails)

Set Treble Level Treble=<Level><CR><LF>
<Level> = 0 to 100
0 = -10dB
50 = 0dB
100 = +10dB

OK<CR><LF> (if command succeeds)
FAIL<CR><LF> (if the command fails)

Using this protocol, you would send the serial command "Source=2" to select the second input
source. Similarly, you would send the command "Volume=50" for a mid-level volume.

All commands in this particular protocol are terminated with <CR><LF>, which is an ASCII "Carriage
Return" (number 13 decimal) followed by an ASCII "Line Feed" (number 10 decimal). Different
protocols use different terminators, and some don't use one at all.

For our example, we want to use the level on a group address (Tag "Amp Source") to select the
source input. A level of 0 will select the first source and so on. A touch screen will be used with a
"selector" component to select the source.

{ global variables section of code }
CurrentSource : integer; { this is the source currently selected }
RequiredSource : integer; { this is the source required }
CommandString : string; { this is the string to be sent to the amplifier }

{ Module 1 code }
RequiredSource := GetLightingLevel("Amp Source");
{ If the required source is different from the current source then send a command
to the Amp }
if RequiredSource <> CurrentSource then
begin
 Format(CommandString, 'Source=', RequiredSource:0, #13#10);
 WriteSerial(1, CommandString);
 CurrentSource := RequiredSource;
end;

You would need to write similar code to control the volume, bass and treble. The code to control the
volume is shown below :

{ global variables section of code }
CurrentVolume : integer; { this is the current amplifier volume }
RequiredVolume : integer; { this is the required amplifier volume }

{ Module 1 code }
{ The volume group address can be 0 to 255, but the amp requires a value of 0 to
100 }
RequiredVolume := LevelToPercent(GetLightingLevel("Amp Volume"));
{ If the required volume is different from the current volume then send a command
to the Amp }
if RequiredVolume <> CurrentVolume then
begin
 Format(CommandString, 'Volume=', RequiredVolume:0, #13#10);
 WriteSerial(1, CommandString);
 CurrentVolume := RequiredVolume;
end;

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 204

So far, we are just controlling the amplifier. It may also be necessary to read data from the amplifier
or to respond to changes the user has made to the amplifier settings. Let's assume that the amplifier
has the following additional commands which can be used :

Command Format Response

Get Source Get Source<CR><LF> Source=<Source><CR><LF>
<Source> = 0 to 4

Get Volume Level Get Volume<CR><LF> Volume=<Level><CR><LF>
<Level> is as above

Get Bass Level Get Bass<CR><LF> Bass=<Level><CR><LF>
<Level> is as above

Get Treble Level Get Treble<CR><LF> Treble=<Level><CR><LF>
<Level> is as above

In addition, this hypothetical amplifier will send the same message shown in the response section
above if the user makes a change to the settings on the amplifier.

So for example, if you want to find which source is selected, you would send the command "Get
Source" and the amplifier would reply with "Source=2" if the third source was selected.

To complete the example, we will need two more modules of code. The first is used to read the data
from the amplifier and the second deals with the responses from the amplifier, and to any messages
related to the user making changes.

{ global variables section of code }
ReceivedString : string; { this is the string received from the serial port }
EqualsPos : integer; { this is the position of an = sign in the received
string }
ReceivedDataString : string; { this is the data portion of the string }
ReceivedData : integer; { this is the actual data }

{ Module 2 code }
WriteSerial(1, 'Get Source'#13#10);
delay(1);
WriteSerial(1, 'Get Volume'#13#10);
delay(1);
WriteSerial(1, 'Get Bass'#13#10);
delay(1);
WriteSerial(1, 'Get Treble'#13#10);
DisableModule("Module 2");

{ Module 3 code }
ReadSerial(1, ReceivedString, #13#10);
{ see if there is an "=" sign in the string }
EqualsPos := Pos('=', ReceivedString);
if EqualsPos > 0 then
begin
 { extract the data from the received string }
 Copy(ReceivedDataString, ReceivedString, EqualsPos + 1, 3);
 ReceivedData := StringToInt(ReceivedDataString);
 { see if the source has changed, and if so, send to C-Bus }
 if Pos('Source', ReceivedString) = 1 then
 begin
 if ReceivedData <> CurrentSource then
 begin
 CurrentSource := ReceivedData;
 SetLightingLevel("Amp Source", CurrentSource, 0);
 end;

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 205

 end;
 { repeat the above for volume, bass and treble }
end;

Example 2 - Binary Protocol

Although ASCII protocols are very easy to use because they are "human readable", they aren't very
efficient. For example, using the above protocol to set the amplifier volume to full level, you need to
send the command "Volume=100" which contains 10 characters (bytes) of data. This is very
wasteful and slow, because you really only need two bytes; one to determine the type of command
and one with the new level. A "binary" protocol to control the same amplifier might be something like
that below :

Command Format Response

Set Source 1<Source><CR><LF>
<Source> = 0 to 4

0<CR><LF> (if the command succeeds)
1<CR><LF> (if the command fails)

Set Volume Level 2<Level><CR><LF>
<Level> = 0 to 100 (usage as
above)

0<CR><LF> (if the command succeeds)
1<CR><LF> (if the command fails)

Set Bass Level 3<Level><CR><LF>
<Level> = 0 to 100 (usage as
above)

0<CR><LF> (if the command succeeds)
1<CR><LF> (if the command fails)

Set Treble Level 4<Level><CR><LF>
<Level> = 0 to 100 (usage as
above)

0<CR><LF> (if the command succeeds)
1<CR><LF> (if the command fails)

Get Source 5<CR><LF> 1<Source><CR><LF>
<Source> is as above

Get Volume Level 6<CR><LF> 2<Level><CR><LF>
<Level> is as above

Get Bass Level 7<CR><LF> 3<Level><CR><LF>
<Level> is as above

Get Treble Level 8<CR><LF> 4<Level><CR><LF>
<Level> is as above

In this case, to select the second source, you would send a command with a character (byte) with
the value 1 (not ASCII 1 which has a value of 49), followed by a byte with the value 2 and the carriage
return and line feed.

The big advantage of using binary protocols (other than efficiency) is their simplicity for writing code.
You can see that extracting data from the response is going to be particularly easy. The first byte is
the data type and the second is the data itself.

The equivalent code to do the same as Example 1 is :

{ global variables section of code }
CurrentSource : integer; { this is the source currently selected }
RequiredSource : integer; { this is the source required }
CommandString : string; { this is the string to be sent to the amplifier }
CurrentVolume : integer; { this is the current amplifier volume }
RequiredVolume : integer; { this is the required amplifier volume }
ReceivedString : string; { this is the string received from the serial port }
ReceivedData : integer; { this is the received data }

{ Module 1 code }
RequiredSource := GetLightingLevel("Amp Source");

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 206

{ If the required source is different from the current source then send a command
to the Amp }
if RequiredSource <> CurrentSource then
begin
 Format(CommandString, #1:0, chr(RequiredSource):0, #13#10);
 WriteSerial(1, CommandString);
 CurrentSource := RequiredSource;
end;
{ The volume group address can be 0 to 255, but the amp requires a value of 0 to
100 }
RequiredVolume := LevelToPercent(GetLightingLevel("Amp Volume"));
{ If the required volume is different from the current volume then send a command
to the Amp }
if RequiredVolume <> CurrentVolume then
begin
 Format(CommandString, #2:0, chr(RequiredVolume):0, #13#10);
 WriteSerial(1, CommandString);
 CurrentVolume := RequiredVolume;
end;

{ Module 2 code }
WriteSerial(1, #5#13#10);
delay(1);
WriteSerial(1, #6#13#10);
delay(1);
WriteSerial(1, #7#13#10);
delay(1);
WriteSerial(1, #8#13#10);
DisableModule("Module 2");

{ Module 3 code }
ReadSerial(1, ReceivedString, #13#10);
{ extract the data from the received string }
ReceivedData := ord(ReceivedString[2]);
{ see if the source has changed, and if so, send to C-Bus }
if ord(ReceivedString[1]) = 1 then
begin
 if ReceivedData <> CurrentSource then
 begin
 CurrentSource := ReceivedData;
 SetLightingLevel("Amp Source", CurrentSource, 0);
 end;
end;
 { repeat the above for volume, bass and treble }
end;

Other Protocols

It is common for a mixture of ASCII and binary to be used in a protocol. For example, setting the
volume may use a command with the ASCII string "Volume=" followed by a character (byte)
containing the level, rather than an ASCII string.

Serial protocols often use Hexadecimal Numbers. This can cause additional confusion, as it can be
used with both ASCII and binary protocols, and is sometimes not well explained in the protocol
documents. For example, setting the volume may use a command with the ASCII string "Volume="
followed by a hexadecimal string containing the level. In this case, to set the level to 100, the
command would be "Volume=64" (because "64" is the hexadecimal equivalent of the number 100).

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 207

If the protocol says you need to use a character with a hexadecimal value of 0A for example (which
corresponds to an ASCII line feed), you can express the character as either a decimal constant
(#10) or a hexadecimal constant (#$0A). Hence the following two lines will result in the same string
being sent :
WriteSerial(1, 'Get Source'#13#10);
WriteSerial(1, 'Get Source'#$0D#$0A);

Notes

The above examples are not intended to be a solution to any specific real-world problem. They are
introduced merely to provide an introduction to some of the techniques required to implement serial
control of a device. The protocols used with real devices can be considerably more complex and can
have some significant difficulties which need to be overcome.

Also, the implementation used above where group addresses are mapped to "levels" in the device
will not necessarily suit all applications. It is common to need to receive "triggers" from C-Bus to
change a channel up or down, or to increase/decrease volume, rather than directly mapping a group
address level to a function. This type of implementation will require significantly different code.

4.26.8 Debugging Serial

If you are having problems communicating with a device using serial IO, there are several possible
causes which are listed below.

Connections

Check that the cables are wired correctly. Make sure the cable is the correct type, connecting
Transmit (Tx) from the computer to Receive (Rx) on the device and vice versa. If the device requires
the use of hardware flow control, ensure that all of the signals are connected.

Protocol

Check that you understand the operation of the device protocol. Often the documentation for devices
is incomplete or even incorrect.

The best way to ensure you correctly understand the protocol is to use a serial terminal program to
send commands to the device and to observe the responses. If you can control the device this way,
then it indicates that you understand how the protocol works. If you can't control the device this way,
it is probably going to be a waste of time trying to write logic code to control the device.

To do this :

1. Connect your computer to the device you want to control (see above)
2. Run a serial terminal program (Hyper Terminal is fine for ASCII based protocols. For other
protocols, you will need to use other software)
3. Set the serial terminal program properties to match those for the device being controlled :

COM Port
Baud rate
Data bits
Stop bits
Parity
Flow control

4. Send some test commands and observe what happens

Messages

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 208

On the Log Form, there is an option to Show Logic Serial Messages. When this is enabled :
all serial messages sent by the logic are shown, along with the line number of the logic code
at the start of each scan, the content of the serial receive buffers are shown if they are not empty.
This allows you to see the received data and whether it is being read by the logic code.

All control characters (non-printable characters) in strings are replaced by the numerical value of the
character contained within "<" and ">" delimiters. For example, if a string 'ABC'#13#10 was sent to
Com Port 1 by logic line 123, the message logged would be :

Logic : COM1 Tx ABC<13><10> (Logic Line 123)

If the contents of the received buffers exceed 100 characters in length, they will be truncated before
being logged and "<x more...>" will be added to the end of the data (where x is the number of
additional characters).

Using Different COM Ports in Device and PC

If you want to use a serial port in an embedded device (C-Touch or PAC) and there is no
corresponding port in your computer, there are two ways of preventing errors when simulating the
project.

Example 1

You want to use serial port 2 on the PAC. You want to test the project in PICED, but the computer
does not have COM Port 2, but it does have COM Port 1.

The solution is to open a different port depending on where the code is running (in the PAC or on
your computer), as shown below:

{ Initialisation section }

if IsPAC then
 OpenSerial(2, 2, 9600, 8, 1, scNoFlowControl, scNoParity)
else
 OpenSerial(2, 1, 9600, 8, 1, scNoFlowControl, scNoParity);

Elsewhere in the code when you use serial port index 2 it will use serial port 2 in a PAC, but COM 1
on your computer.

Example 2

You want to use serial port 2 on the PAC. You want to test the project in PICED, but the computer
does not any COM Ports. You do not want to test the serial functions of the PAC.

The solution is to have all serial functions only run in the PAC, as shown below:

{ Initialisation section }

if IsPAC then
 OpenSerial(2, 2, 9600, 8, 1, scNoFlowControl, scNoParity);

{ Modules section }

if IsPAC then
 WriteSerial(2, CommandString);

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 209

4.26.9 Tutorial 10

Question 1

Write some code to send a command string 'AT' to a modem on serial port COM1 and wait for up to
10 seconds for a reply of 'OK'. All commands and replies are terminated by a carriage return / Line
Feed pair. If the connection was successful, log the message "Modem Connected", otherwise log
"Modem Connection Failed".

Tutorial Answers

4.27 Internet

Various Internet technologies can be used with the Logic Engine, including:
TCP/IP
UDP
Ping
DNS
HTTP
E-Mail

It is also possible to obtain information about the computer's Network Adaptors.

4.27.1 TCP/IP

It is possible to read from and write to TCP/IP Sockets from the Logic Engine. This enables
interfaces to many automation and Audio/Visual products to be created, as well as interfacing
PICED to other software products.

Client Sockets

Client sockets are used to allow the software to connect to other software and devices and
communicate with them. More than one client socket can be open at once. See Software Limits for
details.

The functions included for the support of client sockets are :
ClientSocketConnected Function
ClientSocketError Function
CloseClientSocket Procedure
OpenClientSocket Procedure
ReadClientSocket Procedure
WriteClientSocket Procedure

Server Sockets

Server sockets are used to allow other software and devices to connect to the software. There is
only one server socket available for use with logic. It is not possible to open multiple server sockets
at the same time.

The functions included for the support of server sockets are :
CloseServerSocket Procedure
OpenServerSocket Procedure
ReadServerSocket Procedure

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 210

ServerSocketActive Function
ServerSocketError Function
ServerSocketHasClient Function
WriteServerSocket Procedure

Notes

Sockets may take a small amount of time to be connected. The following code may not work,
because the socket may not be connected by the time the message is sent:

OpenClientSocket(1, '192.168.100.208', 10002);
WriteClientSocket(1, 'Hello');

It is better to allow time for the socket to connect, like this, for example:

OpenClientSocket(1, '192.168.100.208', 10002);
WaitUntil(ClientSocketConnected(1));
WriteClientSocket(1, 'Hello');

It is also advisable to allow some time after sending a message (if you are expecting a reply) before
reading from the socket or closing it.

Logic TCP/IP messages can be shown with the Show Logic TCP/IP Messages option on the Log.
The log will show the data in the receive buffer at the start of each scan. If the data from the socket
is not read, then the buffer will not be cleared and the data will keep being logged.

With Colour C-Touch, only ports in the range 10,000 to 19,999 can be used. These ports need to be
enabled in the Colour C-Touch firewall before use.

See also UTF-8 Example

For more information on the use of TCP/IP sockets, refer to a suitable text book.
4.27.1.1 ClientSocketConnected Function

The ClientSocketConnected function returns whether the Client Socket has connected to a remote
server.

Applicability

Colour C-Touch and Wiser Home Control only.

Syntax

ClientSocketConnected(SocketNumber)

SocketNumber is an Integer

Description

This returns a boolean value with the connected state (true/false) of the Client Socket.

Example

To perform an action only if the first Client socket is connected :
if ClientSocketConnected(1) then ...

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 211

4.27.1.2 ClientSocketError Function

The ClientSocketError function returns the error status of the Client Socket.

Applicability

Colour C-Touch and Wiser Home Control only.

Syntax

ClientSocketError(SocketNumber)

SocketNumber is an Integer

Description

This returns an Integer value with the most recent Client Socket error message.

Value Meaning

0 No Error

1 The socket received an error message that does not fit into any of the following
categories.

2 An error occurred when trying to write to the socket connection.

3 An error occurred when trying to read from the socket connection.

4 A connection request that was already accepted could not be completed.

5 An error occurred when trying to close a connection.

6 A problem occurred when trying to accept a client connection request.

7 A problem occurred when trying to open a connection.

Reading this resets the value to 0. So if you need to use the value, you will need to assign it to
another variable (see example below).

Example

ErrorNumber := ClientSocketError(1);
if ErrorNumber > 0 then
begin
 format(ErrorString, 'Error number ', ErrorNumber:0);
 ...
end;

4.27.1.3 CloseClientSocket Procedure

The CloseClientSocket procedure closes the Client Socket.

Applicability

Colour C-Touch and Wiser Home Control only.

Syntax

CloseClientSocket(SocketNumber);

SocketNumber is an Integer

Description

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 212

This closes the Client socket and makes it available to be re-used.

4.27.1.4 CloseServerSocket Procedure

The CloseClientSocket procedure closes the Server Socket.

Applicability

Colour C-Touch and Wiser Home Control only.

Syntax

CloseServerSocket;

Description

This closes the Server socket and makes it available to be re-used.

4.27.1.5 OpenClientSocket Procedure

The OpenClientSocket procedure opens the Client Socket.

Applicability

Colour C-Touch and Wiser Home Control only.

Syntax

OpenClientSocket(SocketNumber, IPAddress, PortNumber);

SocketNumber is an Integer
IPAddress is a String
PortNumber is an Integer

Description

This opens the Client Socket to connect to IPAddress, and PortNumber.

Example

To open the first Client Socket to connect to the local machine, on port number 23 :
OpenClientSocket(1, '127.0.0.1', 23);

To open the second Client Socket to connect to IP Address 1.2.3.4, on port number 1000 :
OpenClientSocket(2, '1.2.3.4', 1000);

4.27.1.6 OpenServerSocket Procedure

The OpenServerSocket procedure opens the Server Socket.

Applicability

Colour C-Touch and Wiser Home Control only.

Syntax

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 213

OpenServerSocket(PortNumber);

PortNumber is an Integer

Description

This opens the Server Socket to allow connections on PortNumber.

Example

To open the Server Socket for connects on port number 23 :
OpenServerSocket(23);

4.27.1.7 ReadClientSocket Procedure

The ReadClientSocket procedure reads data from a Client Socket.

Applicability

Colour C-Touch and Wiser Home Control only.

Syntax

ReadClientSocket(SocketNumber, DataString, Terminator);

SocketNumber is an Integer
DataString is a String variable
Terminator is a String expression

Description

This reads received data from the Client Socket. The Terminator is used to determine where one
string ends and the next commences. Typically, the Terminator will be a Carriage Return / Line Feed
pair. The result is stored in the DataString variable.

If the Terminator is a null string, the whole of the received string will be placed in the DataString.

Received strings are placed in a buffer until they are read by the user. If the buffer exceeds 10,000
bytes, the newest data will be ignored.

Example

To read a string which will be terminated by a Carriage Return / Line Feed pair :
ReadClientSocket(1, s, #13#10);

To read all received data from the Client Socket :
ReadClientSocket(1, s, '');

To keep reading any received strings in the buffer until there are none left :
repeat

 ReadClientSocket(1, s, #13#10);

 if s <> '' then

 begin

 ...

 end;

until s = '';

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 214

4.27.1.8 ReadServerSocket Procedure

The ReadServerSocket procedure reads data from a Server Socket.

Applicability

Colour C-Touch and Wiser Home Control only.

Syntax

ReadServerSocket(DataString, Terminator);

DataString is a String variable
Terminator is a String expression

Description

This reads received data from the Server Socket. The Terminator is used to determine where one
string ends and the next commences. Typically, the Terminator will be a Carriage Return / Line Feed
pair. The result is stored in the DataString variable.

If the Terminator is a null string, the whole of the received string will be placed in the DataString.

Received strings are placed in a buffer until they are read by the user. If the buffer exceeds 10,000
bytes, the newest data will be ignored.

Example

To read a string which will be terminated by a Carriage Return / Line Feed pair :
ReadServerSocket(s, #13#10);

To read all received data from the Server Socket :
ReadServerSocket(s, '');

To keep reading any received strings in the buffer until there are none left :
repeat

 ReadServerSocket(s, #13#10);

 if s <> '' then

 begin

 ...

 end;

until s = '';

4.27.1.9 ServerSocketActive Function

The ServerSocketActive function returns whether the Server Socket is Active.

Applicability

Colour C-Touch and Wiser Home Control only.

Syntax

ServerSocketActive

Description

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 215

This returns a boolean value which shows whether the Server Socket is active or not.

Example

To perform an action only if the Server socket is active :
if ServerSocketActive then ...

4.27.1.10 ServerSocketError Function

The ServerSocketError function returns the error status of the Server Socket.

Applicability

Colour C-Touch and Wiser Home Control only.

Syntax

ServerSocketError

Description

This returns an Integer value with the most recent Server Socket error message. See
ClientSocketError for error values.

Reading this resets the value to 0. So if you need to use the value, you will need to assign it to
another variable (see example below).

Example

ErrorNumber := ServerSocketError;
if ErrorNumber > 0 then
begin
 format(ErrorString, 'Error number ', ErrorNumber:0);
 ...
end;

4.27.1.11 ServerSocketHasClient Function

The ServerSocketHasClient function returns whether the Server Socket has a Client.

Applicability

Colour C-Touch and Wiser Home Control only.

Syntax

ServerSocketHasClient

Description

This returns a boolean value which shows whether the Server Socket has a Client connected to it or
not.

Example

To perform an action only if the Server socket has a Client :

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 216

if ServerSocketHasClient then ...

4.27.1.12 WriteClientSocket Procedure

The WriteClientSocket procedure sends data to the Client Socket.

Applicability

Colour C-Touch and Wiser Home Control only.

Syntax

WriteClientSocket(SocketNumber, DataString);

SocketNumber is an Integer
DataString is a String

Description

This writes data to the Client socket.

Example

To write a string s to the first Client socket :
WriteClientSocket(1, s);

4.27.1.13 WriteServerSocket Procedure

The WriteServerSocket procedure sends data to the Server Socket.

Applicability

Colour C-Touch and Wiser Home Control only.

Syntax

WriteServerSocket(DataString);

DataString is a String

Description

This writes data to the Server socket.

Example

To write a string s to the Server socket :
WriteServerSocket(s);

4.27.1.14 TCP/IP Socket Examples

The processes in using TCP/IP sockets to communicate with third-party devices are mostly the
same as for serial devices. Please read Serial IO Examples before continuing.

Protocol

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 217

For these examples, the protocol consists of two messages to switch group addresses on and off:

on <group address><CR><LF>
off <group address><CR><LF>

Where <group address> is the group address number to be controlled.

All commands in this particular protocol are terminated with <CR><LF>, which is an ASCII "Carriage
Return" (number 13 decimal) followed by an ASCII "Line Feed" (number 10 decimal).

For example, to switch group address 1 on, the command would be:

on 1<CR><LF>

Client Socket Example

For this example, the PICED is acting as a TCP/IP client. Messages will be sent to a server
switching group addresses on and off.

In the initialisation section of the code, the client socket (number 12345 in this case) needs to be
opened (server it at IP Address 127.0.0.1 in this example):

OpenClientSocket(1, '127.0.0.1', 12345);

Each time group 1 changes, a message will be sent to the server:

once GetLightingState("Group 1") = ON then
begin
 WriteClientSocket(1, 'on 1');
end;

once GetLightingState("Group 1") = OFF then
begin
 WriteClientSocket(1, 'off 1');
end;

Server Socket Example

For this example, the PICED is acting as a TCP/IP server. Messages will be received from a client
switching group addresses on and off.

In the initialisation section of the code, the server socket (number 12345 in this case) needs to be
opened:

OpenServerSocket(12345);

In a module, the messages are read from the socket, processed to determine the action required,
and then the action is performed (switching a group address on or off):

{ Read a message from the socket }
ReadServerSocket(ReceivedCommand, #13#10);

{ If a message has been received, then process it }
if length(ReceivedCommand) > 0 then
begin
 if pos('on', ReceivedCommand) = 1 then // is it an "on" command?

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 218

 begin
 Copy(GroupString, ReceivedCommand, 4, 3); // get the group address
 Group := StringToInt(GroupString);
 SetLightingState(Group, ON); // switch the group on
 end
 else
 if pos('off', ReceivedCommand) = 1 then // is it an "off" command?
 begin
 Copy(GroupString, ReceivedCommand, 5, 3); // get the group address
 Group := StringToInt(GroupString);
 SetLightingState(Group, OFF); // switch the group off
 end
 else
end;

4.27.2 UDP

It is possible to read from and write to UDP Sockets from the Logic Engine. This enables interfaces
to many automation and Audio/Visual products to be created, as well as interfacing PICED to other
software products.

A single UDP server socket is available, but it can also be used as a UDP client. The UDP socket is
opened with a receiving port number. When a UDP message is sent, the IP Address and Port
number for the target is used.

Procedures which can be used with UDP include:
OpenUDPSocket Procedure
CloseUDPSocket Procedure
WriteUDPSocket Procedure
ReadUDPSocket Procedure
UDPSocketError Function
UDPSocketActive Function
SendWOL Procedure

4.27.2.1 OpenUDPSocket Procedure

The OpenUDPSocket procedure opens the UDP Socket.

Applicability

Colour C-Touch only.

Syntax

OpenUDPSocket(PortNumber);

PortNumber is an Integer

Description

This opens the UDP Socket, listening on PortNumber.

See also UDP Example

4.27.2.2 CloseUDPSocket Procedure

The CloseUDPSocket procedure closes the UDP Socket.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 219

Applicability

Colour C-Touch only.

Syntax

CloseUDPSocket;

Description

This closes the UDP socket and makes it available to be re-used.

See also UDP Example

4.27.2.3 WriteUDPSocket Procedure

The WriteUDPSocket procedure sends data to the UDP Socket.

Applicability

Colour C-Touch only.

Syntax

WriteUDPSocket(IPAddress, PortNumber, DataString);

IPAddress is a String
PortNumber is an Integer
DataString is a String

Description

This sends a UDP message to the specified IP Address and Port Number.

To send a UDP broadcast, use the IP Address '255.255.255.255'.

Note that UDP messages are not guaranteed to receive their destination.

See also UDP Example

4.27.2.4 ReadUDPSocket Procedure

The ReadUDPSocket procedure reads data from the UDP Socket.

Applicability

Colour C-Touch only.

Syntax

ReadUDPSocket(DataString, Terminator, IPAddress);

DataString is a String variable
Terminator is a String expression
IPAddress is a string variable

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 220

Description

This reads received data from the UDP socket. The Terminator is used to determine where one string
ends and the next commences. Typically, the Terminator will be a Carriage Return / Line Feed pair.
The result is stored in the DataString variable.

If the Terminator is a null string, the whole of the received string will be placed in the DataString.

Received strings are placed in a queue until they are read by the user. If the buffer exceeds 100
items, the newest data will be ignored.

The IP Address of the source of the message is stored in the IPAddress variable.

See also UDP Example

4.27.2.5 UDPSocketError Function

The UDPSocketError function returns the error status of the UDP Socket.

Applicability

Colour C-Touch only.

Syntax

UDPSocketError

Description

This returns an Integer value with the most recent Client Socket error message.

Error Number Meaning

0 No error

1 Read failed

2 Write failed

3 Open failed

4 Close failed

5 Unknown error

Reading this resets the value to 0. So if you need to use the value, you will need to assign it to
another variable (see example below).

Example

ErrorNumber := UDPSocketError;
if ErrorNumber > 0 then
begin
 format(ErrorString, 'Error number ', ErrorNumber:0);
 ...
end;

4.27.2.6 UDPSocketActive Function

The UDPSocketActive function returns whether the UDP Socket is Active.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 221

Applicability

Colour C-Touch only.

Syntax

UDPSocketActive

Description

This returns a boolean value which shows whether the UDP Socket is active or not. The UDP Socket
is active if it has been successfully opened. Once the UDP socket has been closed, it is no longer
active.

Example

To perform an action only if the UDP socket is active :
if UDPSocketActive then ...

4.27.2.7 SendWOL Procedure

The SendWOL procedure sends a UDP Wake On LAN (WOL) message.

Applicability

Colour C-Touch only.

Syntax

SendWOL(IPAddress, MACAddress, Port);

IPAddress is a String
MACAddress is a String
Port is an integer

Description

This sends a UDP WOL "magic packet" to the specified IP Address, MAC Address and Port (Port
number 7 and 9 are most often used). This is used to wake devices which are "sleeping" or
"hibernating".

To send as a UDP broadcast, use the IP Address '255.255.255.255'.

Note that UDP messages are not guaranteed to receive their destination.

If the UDP Socket is not already open, the SendWOL will open the UDP Socket first.

Example

To send a WOL as a broadcast to MAC Address 01:23:45:67:89:ab, port 7:

SendWOL('255.255.255.255', '01:23:45:67:89:ab', 7);

To send the WOL to a specific IP Address (192.168.1.123) so that the messages will go through a
router:

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 222

SendWOL('192.168.1.123', '01:23:45:67:89:ab', 7);

To send the WOL to a subnet (192.168.1.x), the subnet broadcast address (192.168.1.255) can be
used:

SendWOL('192.168.1.255', '01:23:45:67:89:ab', 7);

4.27.2.8 UDP Example

For this example, we want to broadcast a UDP message "hello" to port 12345 of all devices on the
network, wait for 2 seconds, then display any replies.

Variables s and IPAddress are strings.

{ open the UDP socket }
OpenUDPSocket(12345);

{ send a UDP broadcast on port 12345 }
WriteUDPSocket('255.255.255.255', 12345, 'hello');
delay(2);

repeat
 ReadUDPSocket(s, '', IPAddress);
 if s <> '' then
 WriteLn('Received reply from IP Address ', IPAddress, ' : "', s, '"');
until s = '';

{ close the UDP socket }
CloseUDPSocket;

4.27.3 Ping

The "Ping" utility is used to measure the time taken for a message to get from one machine to
another and back again. The most common use is to determine whether a device exists at a
particular IP Address.

The procedures available for use with ping include:
SendPing Procedure
GetPingResult Function

4.27.3.1 SendPing Procedure

The SendPing procedure sends a "ping" command to an IP Address.

Applicability

Colour C-Touch only.

Syntax

SendPing(IPAddress);

IPAddress is a String

Description

The SendPing command sends a ping message to IP Address. The reply time can be read using

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 223

the GetPingResult Function. Make sure a Delay is used between sending the ping and reading the
result to allow time for the transaction to occur.

See also Ping Example
4.27.3.2 GetPingResult Function

The GetPingResult function returns the result of the SendPing Procedure.

Applicability

Colour C-Touch only.

Syntax

GetPingResult

Description

The GetPingResult function returns the result in milliseconds. A value of 0 means that no ping reply
was received. A value of -1 means that the ping is in progress (waiting for a reply).

See also Ping Example
4.27.3.3 Ping Example

To find whether there is a device at IP Address 192.168.1.123, you can use a ping as follows:

SendPing('192.168.1.123');

// wait for a reply
repeat
 delay(0.2);
until GetPingResult >= 0;

// show result
if GetPingResult = 0 then
 WriteLn('No device found')
else
 WriteLn('Device found');

4.27.4 DNS

The Domain Name System (DNS) is a hierarchical naming system, primarily used for naming web
sites, but also used for computers and other services. These names are more convenient for people
than IP Addresses. For example, the domain name "google.com" is easier to remember than the
corresponding IP Address "66.102.11.104".

The following procedures are available for use with DNS:
DNSLookup Procedure
GetDNSLookupResult Function
GetDNSLookupIPAddress Procedure

4.27.4.1 DNSLookup Procedure

The DNSLookup procedure executes a DNS lookup for the specified domain name.

Applicability

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 224

Colour C-Touch only.

Syntax

DNSLookup(DomainName);

DomainName is a String

Description

This looks up the IP Address of DomainName. The result and IP Address can be read using the
GetDNSLookupResult Function and GetDNSLookupIPAddress Procedure respectively.

Note that the logic engine may pause slightly while the DNS lookup occurs, so this should not be
done on a regular basis. It is recommended that the IP Address of a given domain name only be
looked up once, and that the IP Address be stored for later use.

See also DNS Example

4.27.4.2 GetDNSLookupResult Function

The GetDNSLookupResult function returns the error status of the UDP Socket.

Applicability

Colour C-Touch only.

Syntax

GetDNSLookupResult

Description

This returns an Integer value with the result of the most recent DNS Lookup.

Value Meaning

0 No reply yet

1 OK

2 Unknown error

3 Domain Name not found

See also DNS Example

4.27.4.3 GetDNSLookupIPAddress Procedure

The GetDNSLookupIPAddress procedure returns the IP Address from the most recent DNSLookup
Procedure.

Applicability

Colour C-Touch only.

Syntax

GetDNSLookupIPAddress(IPAddress);

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 225

IPAddress is a String variable

Description

This writes the IP Address from the DNS Lookup into variable IPAddress.

See also DNS Example

4.27.4.4 DNS Example

In this example, we want to look up the IP Address of "google.com":

DNSLookup('google.com');
delay(1);
if GetDNSLookupResult = 1 then
begin
 GetDNSLookupIPAddress(IPAddress);
 WriteLn('Google.com found at ', IPAddress);
end
else
 WriteLn('Google.com not found');

4.27.5 HTTP Data
In addition to being able to communicate via TCP/IP, there are procedures included specifically for
dealing with HTTP data:

GetHTTPData Procedure: this initiates the retrieval of HTTP data
ReadHTTPData Procedure: this reads the retrieved data into logic
PostHTTPData Procedure: this posts HTTP data
ReadHTTPPostData Procedure: this reads the result from an HTTP Post

4.27.5.1 GetHTTPData Procedure

The GetHTTPData procedure reads data from a web site and stores it in a buffer for use by the
ReadHTTPData Procedure.

Applicability

Colour C-Touch only.

Syntax

GetHTTPData(URL);

URL is a String

Description

The GetHTTPData procedure uses an HTTP "get" command to read data from the given URL and
stores this data in a buffer. Since the HHTP command may take some time to execute, this
happens in the background so that the logic engine can perform other tasks.

4.27.5.2 ReadHTTPData Procedure

The ReadHTTPData procedure reads data obtained from a web site using GetHTTPData Procedure.

Applicability

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 226

Colour C-Touch only.

Syntax

ReadHTTPData(DataString);

DataString is a String variable

Description

The ReadHTTPData procedure reads data stored in a buffer by the GetHTTPData procedure and
stores it in the DataString variable.

Example

In this example, a web site http://MyWeatherForecast.com/index.html returns the following HTML
data:

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en-AU" lang="en">
 <head>
 <title>Forecast Summary</title>
 </head>
 <body>
 Today's forecast is sunny with showers in the evening
 </body>
</html>

We want to retrieve this data using the GetHTTPData procedure, then retrieve the forecast (the text
immediately after "forecast is"). The following code will do this:

// get the data
GetHTTPData('http://MyWeatherForecast.com/index.html');
// wait for data to come back
delay(5);
// read the data into a string
ReadHTTPData(DataString);
if DataString <> '' then
begin
 // Find where the data starts and ends
 DataStart := pos('forecast is', DataString) + 12;
 DataEnd := pos('</body>', DataString);
 // extract the data into the string ForecastString
 Copy(ForecastString, DataString, DataStart, DataEnd - DataStart);
end;

4.27.5.3 PostHTTPData Procedure

The PostHTTPData procedure sends data to a web server as part of the request and stores the
response in a buffer for use by the ReadHTTPPostData Procedure.

Applicability

Colour C-Touch only.

Syntax

PostHTTPData(URL, Data);

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 227

URL is a String
Data is a string

Description

The PostHTTPData procedure uses an HTTP "post" command to send data to the given URL and
stores the response data in a buffer. Since the HTTP command may take some time to execute,
this happens in the background so that the logic engine can perform other tasks.

4.27.5.4 ReadHTTPPostData Procedure

The ReadHTTPPostData procedure reads data obtained from a web site using PostHTTPData
Procedure.

Applicability

Colour C-Touch only.

Syntax

ReadHTTPPostData(DataString);

DataString is a String variable

Description

The ReadHTTPPostData procedure reads data stored in a buffer by the PostHTTPData Procedure
and stores it in the DataString variable.

Example

In this example, we post data to the web site http://www.snee.com/xml/crud/posttest.html

We want to retrieve the data using the GetHTTPPostData procedure. The following code will do this:

// make the post request
PostHTTPData('http://www.snee.com/xml/crud/posttest.cgi',
'fname=John&lname=Doe');
// wait for data to come back
delay(5);
// read the data into a string
ReadHTTPPostData(DataString);
if DataString <> '' then
begin
 // Find where the data starts and ends
 DataStart := pos('First name: ', DataString) + 12;
 DataEnd := pos('</p>', DataString);
 // extract the data into the string TheFirstNameString
 Copy(TheFirstNameString, DataString, DataStart, DataEnd - DataStart);
 WriteLn(TheFirstNameString);
end;

4.27.6 E-Mail

E-Mail accounts can be configured using the E-Mail Manager. The data retrieved by the E-Mail
Manager can be accessed using the following functions :

DeleteEMail Procedure

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 228

GetEMailBodyLineCount Function
GetEMailBodyLine Procedure
GetEMailCount Function
GetEMailSender Procedure
GetEMailSubject Procedure
SendEMail Procedure

E-Mail can be read using POP3 and sent using SMTP. Only unencrypted accounts can be used
within Logic Engine.
Wiser 2 can send and receive emails using secure communications on SMTP TLS port 587 and

POP3 port 995.
To implement secure email in a Wiser 2 project simply set the account SMTP port to 587 and the

POP3 port to 995.

Note: Wiser 2 is not able to send email using secure Yahoo or secure Hotmail accounts.

4.27.6.1 GetEMailCount Function

The GetEMailCount function returns the number of E-Mails in the E-Mail account.

Applicability

Colour C-Touch and Wiser Home Control only.

Syntax

GetEMailCount(AccountNumber)

Description

This returns the number of E-Mail messages in the E-Mail account which have not yet been
downloaded from the server..

Example

To perform an action if there are E-Mail messages present in the first E-Mail account (number 0) :
if GetEMailCount(0) > 0 then ...

4.27.6.2 GetEMailBodyLineCount Function

The GetEMailBodyLineCount function returns the number of lines of text in an E-Mail message.

Applicability

Colour C-Touch only.

Syntax

GetEMailBodyLineCount(AccountNumber, MessageNumber)

Description

This returns the number of E-Mail messages in the specified E-Mail message. Note that this is only
valid if the E-Mail account in the E-Mail Manager has been configured to download the body of the E-
Mail messages.

Example

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 229

To process each line of text in the first message (number 0) of the first E-Mail account (number 0) :
for LineNo := 0 to GetEMailBodyLineCount(0, 0) - 1 do
begin
 GetEMailBodyLine(0, 0, LineNo, s);
 ...
end;

4.27.6.3 GetEMailAddress Procedure

The GetEMailAddress function returns the E-Mail address of the sender of an E-Mail message.

Applicability

Colour C-Touch only.

Syntax

GetEMailAddress(AccountNumber, MessageNumber, Sender);

AccountNumber is an Integer
MessageNumber is an integer
Sender is a String Variable

Description

This stores the E-Mail address of the sender of a specified E-Mail message in a string variable. Note
that this is only valid if the E-Mail account in the E-Mail Manager has been configured to download
the sender of the E-Mail messages.

Example

To store the sender's e-mail address of the first message (number 0) of the first E-Mail account
(number 0) in string variable SenderAddress :
GetEMailAddress(0, 0, SenderAddress);

4.27.6.4 GetEMailSender Procedure

The GetEMailSender function returns the name of the sender of an E-Mail message.

Applicability

Colour C-Touch and Wiser Home Control only.

Syntax

GetEMailSender(AccountNumber, MessageNumber, Sender);

AccountNumber is an Integer
MessageNumber is an integer
Sender is a String Variable

Description

This stores the sender of a specified E-Mail message in a string variable. Note that this is only valid
if the E-Mail account in the E-Mail Manager has been configured to download the sender of the E-

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 230

Mail messages.

Note that in Logic Engine version 4.9.2 or earlier, this procedure returned the name and e-mail
address of the sender in a single string. The E-Mail address of the Sender is now obtained using the
GetEMailAddress Procedure.

Example

To store the sender of the first message (number 0) of the first E-Mail account (number 0) in string
variable SenderName :
GetEMailSender(0, 0, SenderName);

4.27.6.5 GetEMailSubject Procedure

The GetEMailSubject function returns the Subject of an E-Mail message.

Applicability

Colour C-Touch and Wiser Home Control only.

Syntax

GetEMailSubject(AccountNumber, MessageNumber, Subject);

AccountNumber is an Integer
MessageNumber is an integer
Subject is a String Variable

Description

This stores the subject of a specified E-Mail message in a string variable. Note that this is only valid
if the E-Mail account in the E-Mail Manager has been configured to download the subject of the E-
Mail messages.

Example

To store the subject of the first message (number 0) of the first E-Mail account (number 0) in string
variable SubjectName :
GetEMailSubject(0, 0, SubjectName);

4.27.6.6 GetEMailBodyLine Procedure

The GetEMailBodyLine function returns a line of text from the body of an E-Mail message.

Applicability

Colour C-Touch only.

Syntax

GetEMailBodyLine(AccountNumber, MessageNumber, LineNumber, Data);

AccountNumber is an Integer
MessageNumber is an integer
LineNumber is an integer
Data is a String Variable

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 231

Description

This stores the content of a specified line of text of a specified E-Mail message in a string variable.
Note that this is only valid if the E-Mail account in the E-Mail Manager has been configured to
download the body of the E-Mail messages.

Example

To store the first line of text (number 0) of the first message (number 0) of the first E-Mail account
(number 0) in string variable Line Text :
GetEMailBodyLine(0, 0, 0, LineText);

4.27.6.7 DeleteEMail Procedure

The DeleteEMail procedure deletes an E-Mail message.

Applicability

Colour C-Touch only.

Syntax

DeleteEMail(AccountNumber, MessageNumber);

AccountNumber is an Integer
MessageNumber is an integer

Description

This deletes a specified E-Mail message from the E-Mail server. Note that this is only valid if the E-
Mail account in the E-Mail Manager has been configured to download Sender/Subject and/or body of
the E-Mail messages.

Example

To delete the first message (number 0) of the first E-Mail account (number 0) :
DeleteEMail(0, 0);

4.27.6.8 SendEMail Procedure

The SendEMail procedure sends an E-Mail message.

Applicability

Colour C-Touch and Wiser Home Control only.

Syntax

SendEMail(AccountNumber, EMailAddress, Subject, Body);

AccountNumber is an Integer
EMailAddress is a String
Subject is a string
Body is a string

Description

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 232

This sends an E-Mail using the specified E-Mail account. Only a single line of text is possible,

Example

To send a test E-Mail using the first E-Mail account (number 0) :
SendEMail(0, 'username@domainname.com', 'test', 'this is a test message');

4.27.7 Network Adaptors

Network Adaptors are used to connect a computer to a network. A computer may have more than
one Network Adaptor, for example, one for Ethernet (LAN) and one for Wireless (WiFi).

The procedures for use with Network Adaptors are:
GetNetworkAdaptorCount Function
GetIPAddress Procedure

4.27.7.1 GetNetworkAdaptorCount Function

The GetNetworkAdaptorCount function returns the number of Network Adaptors.

Applicability

Colour C-Touch only.

Syntax

GetNetworkAdaptorCount

Description

This returns an integer value with the number of Network Adaptors on the computer.

Example

To perform an action only if there are one or more Network Adaptors :
if GetNetworkAdaptorCount > 0 then ...

4.27.7.2 GetIPAddress Procedure

The GetIPAddress procedure returns the IP Address of a given Network Adaptor.

Applicability

Colour C-Touch only.

Syntax

GetIPAddress(NetworkAdaptorNumber, IPAddress);

NetworkAdaptorNumber is an Integer
IPAddress is a String variable

Description

This writes the IP Address for network adaptor NetworkAdaptorNumber into variable IPAddress.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 233

Example

To store the IP Address of the first network adaptor in variable MyIPAddress :
GetIPAddress(1, MyIPAddress);

4.28 Page Properties

It is possible to change some properties of Pages. The following properties can be set:

Property Name Type Property Data Comments
Access Level Integer Level as per Access Control

Manager
Zero based numbering

Background Colour Integer See Colours
Background Gradient
Colour

Integer See Colours

Theme Page Integer Theme page used by the page Zero based numbering
Time-out Duration Integer Page time-out Time is in seconds

0 = default
-1 = no time-out

The following functions can be used with Page Properties:
GetPageIntegerProp Function
SetPageIntegerProp Procedure

Notes

 Setting Page properties should be done with caution. Setting properties of Pages from logic
bypasses some of the checks normally imposed by Logic Engine, so it is possible to cause
unexpected behaviour.

4.28.1 GetPageIntegerProp Function

The GetPageIntegerProp Function gets an integer property of a page.

Applicability

Colour C-Touch only.

Syntax

GetPageIntegerProp(PageNumber, PropertyNumber)

PageNumber is a Page Tag or number (Integer, zero based)
Property is a Page Property Name Tag

Description

This function returns an integer property of a Page. It can be used with logic to make the appearance
or operation of a Project change.

Example

To get the current access level for page called "Tools":

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 234

Level := GetPageIntegerProp("Tools", "Access Level");

4.28.2 SetPageIntegerProp Procedure

The SetPageIntegerProp Procedure sets an integer property of a page.

Applicability

Colour C-Touch only.

Syntax

SetPageIntegerProp(PageNumber, PropertyNumber, NewValue)

PageNumber is a Page Tag or number (Integer, zero based)
Property is a Page Property Name Tag
NewValue is an integer

Description

This function sets an integer property of a Page to a new value. It can be used with logic to make the
appearance or operation of a Project change. This procedure should be used with care.

Example

To set the background colour of a page called "Main" to blue:
SetPageIntegerProp("Main", "Background Colour", clBlue);

4.29 Component Properties

It is possible to change some properties of Components. The following properties can be set:

Property Name Type Property Data Comments
Alpha Blend Active Integer Alpha Blend level 0 to 100%
Alpha Blend Inactive Integer Alpha Blend level 0 to 100%
Background Colour
Active

Integer Active colour of background See Colours

Background Colour
Inactive

Integer Inactive colour of background (if
used)

See Colours

Background Style Active Integer Active fill style of background See Brush Style
Background Style
Inactive

Integer Inactive fill style of background
(if used)

See Brush Style

Border Colour Active Integer Active colour of border See Colours
Border Colour Inactive Integer Inactive colour of border (if

used)
See Colours

Border Shape Integer Shape of border See below
Border Style Active Integer Active style of border See Pen Styles
Border Style Inactive Integer Inactive style of border (if used) See Pen Styles
Border Width Integer Width of the border Must be 1 or more
C-Bus Application Integer C-Bus Application to be

controlled
C-Bus Duration Integer Pulse duration Seconds (0 = no pulse)
C-Bus Group Integer C-Bus Group Address to be The SetCompCBusProp

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 235

controlled Procedure can be used with C-
Bus tags

C-Bus Level Integer Level to be set The SetCompCBusProp
Procedure can be used with C-
Bus tags

C-Bus Network Integer C-Bus Network to be controlled
C-Bus Ramp Rate Integer Ramp rate to be used Seconds (0 = instantaneous)

Only valid ramp rates are
possible.

Current Sub-Page Integer Sub-Page currently displayed in
a frame

Default Sub-Page Integer Default Sub-Page for a frame
Font Colour Active Integer Active colour of font See Colours
Font Colour Inactive Integer Inactive colour of font (if used) See Colours
Font Name Active Integer Active name of font
Font Name Inactive Integer Inactive name of font (if used)
Font Size Active Integer Active size of font
Font Size Inactive Integer Inactive size of font (if used)
Font Style Active Integer Active style of font See Font Styles
Font Style Inactive Integer Inactive style of font (if used) See Font Styles
Graph Title String Title of the graph
Graph X Axis Label String X axis label of graph
Graph X Axis Point
Interval

Integer Interval between points on X
axis

Time is in seconds

Graph X Axis Tick IntervalInteger Interval between ticks on X axis Time is in seconds
Graph Y Axis Max Real Minimum Y axis value
Graph Y Axis Min Real Maximum Y axis value
Graph Y Axis Tick
Interval

Real Interval between ticks on Y axis

Height Integer Height of Component
HTML Refresh Rate Integer Refresh rate for the Web Page Time is in seconds
HTML URL String Web page URL
IB System IO Number Integer In-built system IO variable used

by the component
Use tags. See In-Built System
IO Variables

Image Active Integer Component Active custom
image

Use tags. See DrawImage
Procedure

Image Inactive Integer Component Inactive custom
image (if used)

Use tags. See DrawImage
Procedure

Left Integer Left position of Component
Page Link Integer Page linked by this Component Use Tags
Postfix Text String Postfix text used by custom

value
Prefix Text String Prefix text used by custom

value
Scene Integer Scene Number for Component Use Tags
Shadow Integer Shadow Level 0 to 100%
Slider Bar Colour Active Integer Active colour of slider bar See Colours
Slider Bar Colour Inactive Integer Inactive colour of slider bar (if

used)
See Colours

Slider Slot Background
Colour

Integer Background colour of slider slot See Colours

Slider Slot Border Colour Integer Border colour of slider slot See Colours
Slider Thumb
Background Colour

Integer Background colour of slider
thumb

See Colours

Slider Thumb Border
Colour

Integer Border colour of slider thumb See Colours

Special Function Integer Component Special Function Use Tags
Sub-Page Link Integer Component sub-page link -1 = no sub-page link
System IO Number Integer User system IO variable used Use tags. See User System IO

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 236

by the component Variables
Text Active String Active text on Component Multi-line text uses #13

characters to separate the lines
Text Inactive String Inactive text on Component (if

used)
Multi-line text uses #13
characters to separate the lines

Top Integer Top position of Component
Visible Boolean Controls if component can be

seen
Webcam Refresh Rate Real Refresh rate for web cam Time is in seconds
Webcam URL Integer URL for web cam
Width Integer Width of Component

The following functions can be used with Component Properties:
GetCompBooleanProp Function
GetCompIntegerProp Function
GetCompRealProp Function
GetCompStringProp Procedure
GetCompType Function
GetPageCompCount Function
SetCompBooleanProp Procedure
SetCompCBusProp Procedure
SetCompIntegerProp Procedure
SetCompRealProp Procedure
SetCompStringProp Procedure
ShowingSubPage Function
ShowSubPage Procedure

Notes

The following border shapes can be used with the "Border Shape" property:

Component Shape Number Comment
Rectangle 0
Round Rectangle 1
Capsule 2
Polygon 3
Circle/Ellipse 4
Triangle (Right) 5
Triangle (Left) 6
Triangle (Up) 7
Triangle (Down) 8
Pointer (Left) 9
Pointer (Right) 10
Pointer (Left & Right) 11
Pointer (Up) 12
Pointer (Down) 13
Pointer (Up & Down) 14
Star 15 It is not a good idea to change to or from this shape in logic
Line 16 It is not a good idea to change to or from this shape in logic
Arbitrary 17 It is not a good idea to change to or from this shape in logic

It is best to give Components a Name for use with these functions.

Many properties only apply to some Component Types.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 237

 Setting Component properties should be done with caution. Setting properties of Components
from logic bypasses some of the checks normally imposed by Logic Engine, so it is possible to
cause unexpected behaviour.

4.29.1 GetCompBooleanProp Function

The GetCompBooleanProp Function gets a Boolean property of a Component.

Applicability

Colour C-Touch only.

Syntax

GetCompBooleanProp(PageNumber, CompNumber, PropertyNumber)

PageNumber is a Page name Tag or number (Integer, zero based)
CompNumber is a Component name Tag (Integer, zero based)
Property is a Component Property Name Tag

Description

This function returns a boolean property of a Component on a Page. It can be used with logic to
make the appearance or operation of a Project change.

Example

To perform an action if the component called "Next" on a page called "Tools" is visible:
if GetCompBooleanProp("Tools", "Next", "Visible") then...

4.29.2 GetCompIntegerProp Function

The GetCompIntegerProp Function gets an integer property of a Component.

Applicability

Colour C-Touch only.

Syntax

GetCompIntegerProp(PageNumber, CompNumber, PropertyNumber)

PageNumber is a Page name Tag or number (Integer, zero based)
CompNumber is a Component name Tag or number (Integer, zero based)
Property is a Component Property Name Tag

Description

This function returns an integer property of a Component on a Page. It can be used with logic to
make the appearance or operation of a Project change.

Example

To get the page link of a component called "Next" on a page called "Tools":
NextPage := GetCompIntegerProp("Tools", "Next", "Page Link");

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 238

4.29.3 GetCompRealProp Function

The GetCompRealProp Function gets a Real property of a Component.

Applicability

Colour C-Touch only.

Syntax

GetCompRealProp(PageNumber, CompNumber, PropertyNumber)

PageNumber is a Page name Tag or number (Integer, zero based)
CompNumber is a Component name Tag or number (Integer, zero based)
Property is a Component Property Name Tag

Description

This function returns a real property of a Component on a Page. It can be used with logic to make
the appearance or operation of a Project change.

Example

To get the maximum of the Y axis (not the maximum data point) of a component called "Power
Graph" on a page called "Main":

Max := GetCompRealProp("Main", "Power Graph", "Graph Y Axis Max");

4.29.4 GetCompStringProp Procedure

The GetCompStringProp Procedure gets a string property of a Component.

Applicability

Colour C-Touch only.

Syntax

GetCompStringProp(PageNumber, CompNumber, PropertyNumber, StringVariable);

PageNumber is a Page name Tag or number (Integer, zero based)
CompNumber is a Component name Tag or number (Integer, zero based)
Property is a Component Property Name Tag
StringVariable is a String variable where the result is to be stored

Description

This function returns a string property of a Component on a Page. It can be used with logic to make
the appearance or operation of a Project change.

Example

To get the active text of a component called "Main Light" on a page called "Timeout":
GetCompStringProp("Timeout", "Main Light", "Text Active", s);

If the component had two lines of text, "Light" and "On", then the variable s will now contain the text
"Light" and "On" separated by a carriage return character (#13).

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 239

4.29.5 GetCompType Function

The GetCompType Function gets the type of a Component.

Applicability

Colour C-Touch only.

Syntax

GetCompType(PageNumber, CompNumber)

PageNumber is a Page name Tag or number (Integer, zero based)
CompNumber is a Component name Tag or number (Integer, zero based)

Description

This function returns an integer value, the type, of a Component on a Page. It can be used with logic
to make the appearance or operation of a Project change.

The Component types are:

Component Type Value Comment
Button 1
Shape 2
Text 3
Image 4 Includes Web Cam components
Clock 5
Slider 7 Includes bar graph Components
Level 8
Monitor 9
Selector 10
HTML 11
Graph 12
Calendar 13

Example

To set the active colour of all button Components on a page called "Tools" to yellow:
for i := 1 to GetPageCompCount("Tools") do

begin

 if GetCompType("Tools", i - 1) = 1 then // Only do this for button
Components

 begin

 SetCompIntegerProp("Tools", i - 1, "Background Colour Active",
clYellow);

 end;

end;

4.29.6 GetPageCompCount Function

The GetPageCompCount Function gets the number of Components on a Page.

Applicability

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 240

Colour C-Touch only.

Syntax

GetPageCompCount(PageNumber)

PageNumber is a Page name Tag or number (Integer, zero based)

Description

This function returns an integer value, the number Components on a Page. It can be used with logic
to make the appearance or operation of a Project change.

Note that this does not include components on the page's theme page. So if a page displays 7
components, and 4 of them are on the theme page, the GetPageCompCount function will return a
value of 3.

See GetCompType Example

4.29.7 SetCompBooleanProp Procedure

The SetCompBooleanProp Procedure sets a Boolean property of a Component.

Applicability

Colour C-Touch only.

Syntax

SetCompBooleanProp(PageNumber, CompNumber, PropertyNumber, NewValue);

PageNumber is a Page name Tag or number (Integer, zero based)
CompNumber is a Component name Tag or number (Integer, zero based)
Property is a Component Property Name Tag
NewValue is a Boolean value

Description

This function sets the value of a boolean property of a Component on a Page. It can be used with
logic to make the appearance or operation of a Project change. This procedure should be used with
care.

Example

To make the component called "Next" on a page called "Tools" invisible:
SetCompBooleanProp("Tools", "Next", "Visible", false);

4.29.8 SetCompCBusProp Procedure

The SetCompCBusProp Procedure sets a C-Bus properties of a Component.

Applicability

Colour C-Touch only.

Syntax

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 241

SetCompCBusProp(PageNumber, CompNumber, Network, Application, Group, Level);

PageNumber is a Page name Tag or number (Integer, zero based)
CompNumber is a Component name Tag or number (Integer, zero based)
Network is a C-Bus Network or Tag
Application is a C-Bus Application or Tag
Group is a C-Bus Group Address or Tag
Level is a C-Bus Level or Tag

Description

This function sets the C-Bus properties of a Component on a Page. It can be used with logic to
make the appearance or operation of a Project change. This procedure should be used with care.

Although the C-Bus Properties can be set with the SetCompIntegerProp Procedure, it is simpler to
use the SetCompCBusProp Procedure as all properties are set at once and tags can be used for the
group address and level.

Example

To make the component called "Scene" on a page called "Main" trigger a different Scene called
"Relaxing" by setting a new level:

SetCompCBusProp("Main", "Scene", "Local", "Trigger", "My Scenes", "Relax
Scene");

4.29.9 SetCompIntegerProp Procedure

The SetCompIntegerProp Procedure sets an Integer property of a Component.

Applicability

Colour C-Touch only.

Syntax

SetCompIntegerProp(PageNumber, CompNumber, PropertyNumber, NewValue);

PageNumber is a Page name Tag or number (Integer, zero based)
CompNumber is a Component name Tag or number (Integer, zero based)
Property is a Component Property Name Tag
NewValue is an Integer value

Description

This function sets the value of an Integer property of a Component on a Page. It can be used with
logic to make the appearance or operation of a Project change. This procedure should be used with
care.

Example

To make the component called "Scene" on a page called "Main" control the Scene called
"Relaxing":

SetCompIntegerProp("Tools", "Next", "Scene", "Relaxing");

4.29.10 SetCompRealProp Procedure

The SetCompRealProp Procedure sets a Real property of a Component.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 242

Applicability

Colour C-Touch only.

Syntax

SetCompRealProp(PageNumber, CompNumber, PropertyNumber, NewValue);

PageNumber is a Page name Tag or number (Integer, zero based)
CompNumber is a Component name Tag or number (Integer, zero based)
Property is a Component Property Name Tag
NewValue is a Real value

Description

This function sets the value of a Real property of a Component on a Page. It can be used with logic
to make the appearance or operation of a Project change. This procedure should be used with care.

Example

To change the scale on a graph Component called "Outside Temp" on a page called "Main" to be
from 10C to 30C:

SetCompRealProp("Main", "Outside Temp", "Graph Y Axis Min", 10);

SetCompRealProp("Main", "Outside Temp", "Graph Y Axis Max", 30);

4.29.11 SetCompStringProp Procedure

The SetCompStringProp Procedure sets a String property of a Component.

Applicability

Colour C-Touch only.

Syntax

SetCompStringProp(PageNumber, CompNumber, PropertyNumber, NewValue);

PageNumber is a Page name Tag or number (Integer, zero based)
CompNumber is a Component name Tag or number (Integer, zero based)
Property is a Component Property Name Tag
NewValue is a String value

Description

This function sets the value of a String property of a Component on a Page. It can be used with logic
to make the appearance or operation of a Project change. This procedure should be used with care.

Example

To change the active text on a component called "Lights" on a page called "Main" to "Outside":
SetCompStringProp("Main", "Lights", "Text Active", 'Outside');

To change the active text on a component called "Lights" on a page called "Main" to have two lines,
"Outside" and "Lights":

SetCompStringProp("Main", "Lights", "Text Active", 'Outside'#13'Lights');

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 243

4.29.12 ShowSubPage Procedure

The ShowSubPage procedure shows a Sub-Page in a Sub-Page Frame.

Applicability

Colour C-Touch only.

Syntax

ShowSubPage(PageNo, CompNo, SubPageNo);

PageNo is an Integer or Page name Tag
CompNo is an Integer or Component name Tag
SubPageNo is an Integer or Sub-Page name Tag

Description

The ShowSubPage procedure shows the selected Sub-Page in a Sub-Page Frame. Note that the
first Page and Component number is 0, not 1.

Note that the same result can be achieved using the SetCompIntegerProp Procedure with the
Current Sub-Page property.

Example

To display the Sub-Page called "Video" in a Sub-Page Frame called "Control Frame" on a page
called "AV Control" :

ShowSubPage("AV Control", "Control Frame", "Video");

See also ShowPage Procedure and ShowingSubPage Function
4.29.13 ShowingSubPage Function

The ShowingSubPage function returns whether a Sub-Page is showing in a Sub-Page Frame.

Applicability

Colour C-Touch only.

Syntax

ShowingSubPage(PageNo, CompNo, SubPageNo)

PageNo is an Integer or Page name Tag
CompNo is an Integer or Component name Tag
SubPageNo is an Integer or Sub-Page name Tag

Description

The ShowingSubPage function returns whether the selected Sub-Page is currently being displayed
in the Sub-Page Frame. Note that the first page and component number is 0, not 1.

Note that the same result can be achieved using the GetCompIntegerProp Function with the Current
Sub-Page property and comparing it with the number of the Sub-Page.

Example

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 244

To perform an action if the Sub-Page called "Video" is being displayed in a Sub-Page Frame called
"Control Frame" on a page called "AV Control" :

if ShowingSubPage("AV Control", "Control Frame", "Video") then ...

See also ShowingPage Function and ShowSubPage Procedure

4.30 Profiles

Profiles can be used to change Logic behaviour depending on which device the Logic is running in.
The functions provided for use with profiles include:

GetProfile Function
ProfileIsSet Function
SetProfile Procedure

4.30.1 GetProfile Function

The GetProfile Function returns the number of the currently selected Profile.

Syntax

GetProfile

Description

This function returns an integer value which is the number of the current Profile. Note that the index
of the first Profile is 0, not 1.

Example

To perform an action only if the first Profile is selected:

if GetProfile = 0 then
begin
 { do something here }
end;

See also ProfileIsSet Function

4.30.2 ProfileIsSet Function

The ProfileIsSet Function returns whether a Profile or Profile Group is currently set.

Syntax

ProfileIsSet(ProfileNo)

ProfileNo is an integer or Profile or Profile Group Tag
Result is boolean

Description

This function returns whether the Profile or Profile Group is currently set. It is recommended that
tags be used for ProfileNo as it is actually a bit mask as shown in the table below:

Profile 1 Profile 2 Profile 3 Profile No
0 (Binary 00000000)

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 245

1 (Binary 00000001)
2 (Binary 00000010)
3 (Binary 00000011)
4 (Binary 00000100)
5 (Binary 00000101)
6 (Binary 00000110)
7 (Binary 00000111)

Example

To perform an action only if Profile "Room 2" is set for this project:

if ProfileIsSet("Room 2") then
begin
 { do something here }
end;

See also GetProfile Function

4.30.3 SetProfile Procedure

The SetProfile procedure sets the current Profile.

Applicability

Colour C-Touch only.

Syntax

SetProfile(ProfileNumber);

ProfileNumber is an integer or profile Tag

Description

This sets the current Profile to be used.

Example

To set profile "Room 2" to be used:

SetProfile("Room 2");

4.31 Media Transport Control

Many aspects of the Media Transport Control Application can be accessed via the
ExecuteSpecialFunction Procedure and In-Built System IO Variables.

There are some additional functions and procedures for use with using the logic engine:
GetTransportControlData Procedure
TransportControlData Procedure
TransportControlDataCount Function

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 246

TransportControlDataMLG Function
TransportControlDataStart Function
TransportControlDataType Function
TransportControlDataValid Function
TransportControlFlag Function

The method of using these functions is as follows:
1. Use the GetTransportControlData Procedure to command the media server to send the required
data.
2. Wait until all of the data has been returned. The TransportControlDataValid Function will tell you
this.
3. Use the TransportControlDataCount Function to know how many data items there are (0 to 15).
4. Use the TransportControlData Procedure to get the actual data.

For details of the operation of the Transport Control Application, refer to the C-Bus Concepts
document.

4.31.1 GetTransportControlData Procedure

The GetTransportControlData Procedure initiates the retrieval of all Media Transport Control Data
from a media server.

Applicability

Colour C-Touch and C-Touch Mark 2 only.

Syntax

GetTransportControlData(MLG, DataType, StartIndex);

MLG is an integer for Media Link Group Tag
DataType and StartIndex are integers

Description

This sends a command to the media server controlling Media Link Group MLG to send a particular
type of text data. Only 15 text items can be sent each time, so you also need to set the starting
index (first item is 0). The values for DataType are:

Value Meaning Comment

0 Category Retrieving a list of Media Categories

1 Selection Retrieving a list of Selections

2 Track Retrieving a list of Tracks

 This procedure should be used with great care. Excessive use of this will cause a lot of C-Bus
traffic and may interfere with the normal operation of the C-Bus system.

The data returned by the media server can be accessed using:
TransportControlData Procedure
TransportControlDataCount Function
TransportControlDataMLG Function
TransportControlDataStart Function
TransportControlDataType Function
TransportControlDataValid Function

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 247

Example

To initiate the retrieval of the first sources from Media Link Group 2:
GetTransportControlData(2, 0, 0);

4.31.2 TransportControlData Procedure

The TransportControlData Procedure gets some Media Transport Control Data, previously returned
from a media server.

Applicability

Colour C-Touch and C-Touch Mark 2 only.

Syntax

TransportControlData(Index, s);

Index is an integer (0 to 14)
s is a string variable

Description

The TransportControlData procedure gets an item of data (previously requested using
GetTransportControlData Procedure) and stores it in a string variable.

Example

To get the first piece of Media Transport Control data and store it in a string called TheSource:
TransportControlData(0, TheSource);

4.31.3 TransportControlDataType Function

The TransportControlDataType Function returns the type of Media Transport Control Data, previously
returned from a media server.

Applicability

Colour C-Touch and C-Touch Mark 2 only.

Syntax

TransportControlDataType

Description

The TransportControlDataType function returns the type of the data (previously requested using
GetTransportControlData Procedure). See GetTransportControlData Procedure for details of the data
type values.

Example

To check if the Media Transport Control data is a list of sources:
if TransportControlDataType = 0 then...

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 248

4.31.4 TransportControlDataStart Function

The TransportControlDataStart Function returns the start index of Media Transport Control Data,
previously returned from a media server.

Applicability

Colour C-Touch and C-Touch Mark 2 only.

Syntax

TransportControlDataStart

Description

The TransportControlDataType function returns the start index of the data (previously requested
using GetTransportControlData Procedure).

Example

To assign the start index of the Media Transport Control data to variable StartIndex:
StartIndex := TransportControlDataStart;

4.31.5 TransportControlDataMLG Function

The TransportControlDataMLG Function returns the Media Link Group of the Media Transport Control
Data, previously returned from a media server.

Applicability

Colour C-Touch and C-Touch Mark 2 only.

Syntax

TransportControlDataMLG

Description

The TransportControlDataMLG function returns the Media Link Group of the data (previously
requested using GetTransportControlData Procedure).

Example

To assign the Media Link Group of the Media Transport Control data to variable CurrentMLG:
StartMLG := TransportControlDataMLG;

4.31.6 TransportControlDataCount Function

The TransportControlDataCount Function returns the number of Media Transport Control Data items,
previously returned from a media server.

Applicability

Colour C-Touch and C-Touch Mark 2 only.

Syntax

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 249

TransportControlDataCount

Description

The TransportControlDataCount function returns the number of data items (previously requested
using GetTransportControlData Procedure). It will have a value of between 0 and 15.

Example

To iterate through all of the Media Transport Control data items:
for index := 0 to TransportControlDataCount - 1 do
begin
 TransportControlData(index, DataString);
 ...
end;

4.31.7 TransportControlDataValid Function

The TransportControlDataValid Function returns whether all of Media Transport Control Data, has
been returned from a media server.

Applicability

Colour C-Touch and C-Touch Mark 2 only.

Syntax

TransportControlDataValid

Description

The TransportControlDataValid function returns a boolean value which indicates whether all data
(previously requested using GetTransportControlData Procedure) has been received.

Example

To check the Media Transport Control data is complete before using it:
if TransportControlDataValid then
begin
 ...
end;

4.31.8 TransportControlFlag Function

The TransportControlFlag Function returns whether certain Media Transport Control messages have
been received from a media client.

Applicability

Colour C-Touch and C-Touch Mark 2 only.

Syntax

TransportControlFlag(MLG, FlagNumber)

MLG is an integer for Media Link Group Tag
FlagNumber in an integer

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 250

Description

The TransportControlFlag function returns a boolean value which indicates certain C-Bus Messages
have been received for a particular Media Link Group. This if of use if you want to control a media
server (via Serial or Sockets (TCP/IP)) and to provide access to that via C-Bus.

Note that the flags are automatically cleared as soon as this function has been used to look at their
state.

The flag number values are:

Flag Number Usage

0 Has a Next Category command been received

1 Has a Previous Category command been received

2 Has a Next Selection command been received

3 Has a Previous Selection command been received

4 Has a Next Track command been received

5 Has a Previous Track command been received

Example

To perform an action if a Next Track message has been received on Media Link Group 2:
if TransportControlFlag(2, 4) then
begin
 ...
end;

4.32 Complex Data Types

In addition to the standard Pascal Types, it is possible to create user defined types, including :
Enumerated Types
Sub-Ranges
Arrays
Records
Pointers
Sets

The need for these does not arise often for automation purposes.

4.32.1 Enumerated Types

An enumerated type (also called a scalar) defines an ordered set of values by simply listing
identifiers that represent these values. The values have no inherent meaning, and their ordinality
follows the sequence in which the identifiers are listed. The benefit of this is that you can use names
rather than numbers to represent values.

To declare an enumerated type, use the syntax

{ type section }

TypeName = (val1, ..., valn);

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 251

where TypeName and each val are valid identifiers. For example, the declaration

{ type section }

Suit = (Club, Diamond, Heart, Spade);

defines an enumerated type called Suit whose possible values are Club, Diamond, Heart, and
Spade. When you declare an enumerated type, you are declaring each val to be a constant of type
TypeName. If the val identifiers are used for another purpose within the same scope, naming
conflicts occur. For example, suppose you declare the type

{ type section }

TSound = (Click, Clack, Clock);

Unfortunately, if Click is also the name of a variable used within the same scope, you'll get a
compilation error; the compiler interprets Click within the scope of the procedure as a reference to
the Click variable. A good solution is to choose constant names that are not likely to conflict with
other identifiers. Examples:

{ type section }

TSound = (tsClick, tsClack, tsClock);

TMyColor = (mcRed, mcBlue, mcGreen, mcYellow, mcOrange);

Answer = (ansYes, ansNo, ansMaybe);

The prefixes in the above example are used to indicate the type, and to prevent naming clashes. So,
with the above declarations, you could still use a variable called Click.

You can use the (val1, ..., valn) construction directly in variable declarations, as if it were a type
name:

{ var section }

MyCard: (Club, Diamond, Heart, Spade);

But if you declare MyCard this way, you can't declare another variable within the same scope using
these constant identifiers. Thus

{ var section }

Card1: (Club, Diamond, Heart, Spade);

Card2: (Club, Diamond, Heart, Spade);

generates a compilation error. But

{ var section }

Card1, Card2: (Club, Diamond, Heart, Spade);

compiles cleanly, as does

{ type section }

 Suit = (Club, Diamond, Heart, Spade);

{ var section }

Card1: Suit;

Card2: Suit;

Consider the following code,

{ type section }

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 252

Weekday = (Monday, Tuesday, Wednesday, Thursday, Friday);

{ var section }

Workday : Weekday;

The first symbol in the set has an ordinal value of zero, and each successive symbol has a value of
one greater than its predecessor. Hence :

Tuesday < Friday
evaluates as true, because Tuesday occurs before Friday in the set.

The following Ordinal Functions can also be used on Enumerated Types.

Ord

ord(symbol) returns the value of the symbol, thus
ord(Tuesday)

will give a value of 1

Pred

pred(symbol) obtains the previous symbol, thus
pred(Wednesday)

will give Tuesday

Succ

succ(symbol) obtains the next symbol, thus
succ(Monday)

gives Tuesday

Enumerated values can be used in for statements :

for Workday := Monday to Friday

or as a constant in a case statement :

case Workday of

 Monday : writeln('Mondays always get me down.');

 Tuesday, Wednesday, Thursday : writeln('Another Day, Another Dollar.');

 Friday : writeln('Get ready for party time!')

end;

Examples

If you wanted to record the state that the home security system was in, you could define an
enumerated type :

TSecurityMode = (Disarmed, Armed, Away, Home, Night);

You could then define a variable of this type and use it :

{ var section }

SecurityMode : TSecurityMode;

{ module section }

if (Time = sunset) and (SecurityMode = Away) then ...

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 253

4.32.2 Sub-Ranges

A subrange type represents a subset of the values in another ordinal type (called the base type).
Any construction of the form

Low..High

where Low and High are constant expressions of the same ordinal type and Low is less than High,
identifies a subrange type that includes all values between Low and High. For example, if you
declare the enumerated type

type

 TColors = (Red, Blue, Green, Yellow, Orange, Purple, White, Black);

you can then define a subrange type like

type

 TMyColors = Green..White;

Here TMyColors includes the values Green, Yellow, Orange, Purple, and White.

You can use numeric constants and characters to define subrange types:

type

 SomeNumbers = -128..127;

 Caps = 'A'..'Z';

When you use numeric or character constants to define a subrange, the base type is the smallest
integer or character type that contains the specified range.
The Low..High construction itself functions as a type name, so you can use it directly in variable
declarations. For example,

var

 SomeNum: 1..500;

declares an integer variable whose value can be anywhere in the range from 1 to 500.

The ordinality of each value in a subrange is preserved from the base type. (In the first example
above, if Color is a variable that holds the value Green, Ord(Color) returns 2 regardless of whether
Color is of type TColors or TMyColors.) Values do not wrap around the beginning or end of a
subrange, even if the base is an integer or character type; incrementing or decrementing past the
boundary of a subrange simply converts the value to the base type. Hence, while

type

 Percentile = 0..99;

var

 I: Percentile;

...

I := 100;

produces an error,

I := 99;

Inc(I);

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 254

assigns the value 100 to I (unless compiler range-checking is enabled).

4.32.3 Arrays

An array is a structure which holds many variables, all of the same data type. The array consists of
a certain number of elements, each element of the array capable of storing one piece of data (ie, a
variable). Arrays can hence be used to store many variables in an ordered way. Array types are
denoted by constructions of the form

array[IndexType1, ..., IndexTypeN] of baseType

where each IndexType is an ordinal type. Since the IndexType index the array, the number of
elements an array can hold is limited by the product of the sizes of the IndexType. In practice,
IndexType are usually integer subranges.

One Dimensional Arrays

In the simplest case of a one-dimensional array, there is only a single IndexType. For example,

var
 MyArray: array[1..100] of Char;

declares a variable called MyArray that holds an array of 100 character values. Given this
declaration, MyArray[3] denotes the third character in MyArray. If you create an array but don't
assign values to all its elements, the unused elements are still allocated and contain random data;
they are like uninitialised variables.

Multi-Dimensional Arrays

A multidimensional array is an array of arrays. For example,

type
 TMatrix = array[1..10] of array[1..50] of Real;

is equivalent to

type
 TMatrix = array[1..10, 1..50] of Real;

Whichever way TMatrix is declared, it represents an array of 500 real values. A variable MyMatrix of
type TMatrix can be indexed like this: MyMatrix[2,45]; or like this: MyMatrix[2][45].

An array type of the form

array[0..x] of Char

is called a zero-based character array. Zero-based character arrays are used to store strings.

Example

If you want to keep track how long various loads have been on, you could create an array to store
the on times :

var
 OnDuration : array[0..255] of integer;

You could then check if each load is on once per minute and accumulate the total :

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 255

once Second = 0 then
 for Group := 0 to 255 do
 if GetLightingState(Group) then
 OnDuration[Group] := OnDuration[Group] + 1;

4.32.4 Records

A record (similar to a structure in some languages) represents a set of elements. Each element is
called a field. The declaration of a record type specifies a name and type for each field. The syntax
of a record type declaration is

{ type section }

 RecordTypeName = record

 FieldList1: type1;
 ...

 FieldListn: typen;

 end;

Where RecordTypeName is a valid identifier, each type denotes a type, and each FieldList is a valid
identifier or a comma-delimited list of identifiers. The final semicolon is optional.
For example, the following declaration creates a record type called TDateRec.

{ type section }

 TDateRec = record

 Year: Integer;

 Month: (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec);

 Day: 1..31;

 end;

Each TDateRec contains three fields: an integer value called Year, a value of an enumerated type
called Month, and another integer between 1 and 31 called Day. The identifiers Year, Month, and
Day are the field designators for TDateRec, and they behave like variables. The TDateRec type
declaration, however, does not allocate any memory for the Year, Month, and Day fields; memory is
allocated when you instantiate the record, like this:

{ var section }

 Record1, Record2: TDateRec;

This variable declaration creates two instances of TDateRec, called Record1 and Record2.

You can access the fields of a record by using the field designators with the record's name:

Record1.Year := 1904;

Record1.Month := Jun;

Record1.Day := 16;

Or use a with statement:

with Record1 do

begin

 Year := 1904;

 Month := Jun;

 Day := 16;

end;

You can copy the values of Record1's fields to Record2:

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 256

Record2 := Record1;

Because the scope of a field designator is limited to the record in which it occurs, you don't have to
worry about naming conflicts between field designators and other variables.

Instead of defining record types, you can use the record construction directly in variable
declarations:

var

 S: record

 Name: string;

 Age: Integer;

 end;

However, a declaration like this largely defeats the purpose of records, which is to avoid repetitive
coding of similar groups of variables. Moreover, separately declared records of this kind will not be
assignment-compatible, even if their structures are identical.

Variant records are also possible to use with the Logic Engine. As these are very uncommon, they
are not discussed in this document. Refer to any Pascal book for more details.

Example

If you want to create Scenes, but not use the in-built Scene functions, you could create your own.
First you would create a record structure to hold each item in the Scene :

SceneItem = record
 GroupAddress : integer;
 Level : integer;
 RampRate : integer;
end;

Then you could create a record to contain a Scene, which is just an array of SceneItems :

Scene : array[1..SceneItemCount] of SceneItem;

To set the Scene, you could do as follows :

for i := 1 to SceneItemCount do
 SetLightingLevel(Scene[i].GroupAddress, Scene[i].Level, Scene[i].RampRate]);

4.32.5 Pointers

A pointer is a data type which holds a memory address.

To declare a pointer data type, you must specify what it will point to. That data type is preceded with
a carat ()̂. For example, if you are creating a pointer to an integer, you would use this code:

{ type section }

 IntegerPointer = ^integer;

You can then, of course, declare variables to be of type IntegerPointer.

{ var section }

 P1, P2, P3 : IntegerPointer;

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 257

Before accessing a pointer, you must create a memory space for it. This is done with the new
function :

New(PointerVariable);

To access the data stored at that memory address, you "de-reference" the pointer by adding a carat
after the variable name. For example, if P1 was declared as type IntegerPointer (from above), you
can assign the memory location a value by using:

P1^ := 5;

After you are done with the pointer, you must deallocate the memory space. Otherwise, each time
the program is run, it will allocate more and more memory until your computer has no more. To
deallocate the memory, you use the Mark and Release commands.

A pointer can be assigned to another pointer. However, note that since only the address, not the
value, is being copied, once you modify the data located at one pointer, the other pointer, when de-
referenced, also yields modified data. Also, if you free (or deallocate) a pointer, the other pointer now
points to meaningless data.

The primary use of pointers is in creating dynamically-sized data structures. If you need to store
many items of one data type in order, you can use an array. However, your array has a predefined
size. If you don't have a large enough size, you may not be able to accommodate all the data. If you
have a huge array, you take up a lot of memory when sometimes that memory is not being used.

A dynamic data structure, on the other hand, takes up only as much memory as is being used.
What you do is to create a data type that points to a record. Then, the record has that pointer type
as one of its fields. For example, stacks and queues can all be implemented using this data
structure:

{ type section }

 PointerType = ^RecordType;

 RecordType = record

 data : integer;

 next : PointerType;

 end;

Each element points to the next. To know when a chain of records has ended, the next field is
assigned a value of nil.

Pointers which do not reference any memory location should be assigned the value nil.

For more information about Pointers, refer to any Pascal book.

4.32.6 Memory Management

Code Memory

The program code is allocated 20,000 compiled instructions. This typically corresponds to around
5,000 lines of code, but depends on the particular instructions used.

Stack Memory

Memory allocated at compile time (regular variables) is called Statically Allocated Memory and is
stored on the "stack".

The stack contains enough storage for 20,000 (6,000 for PAC) data items (integers, real numbers or
characters). The constants area of the memory has allocation for :

500 (200 for PAC) integers; and
500 (200 for PAC) real numbers; and

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 258

1000 (none for PAC) set elements; and
10,000 (3,000 for PAC) characters (in strings)

Heap Memory

Memory allocated by the New function is called Dynamically Allocated Memory, and is stored in an
area called the "heap".

The heap shares the memory allocated for the stack. Using more heap memory reduces the amount
available for the stack.

Each time the Logic Engine is run, any memory used in the heap is cleared. Each time a new
pointer is created, some heap memory is used up. Eventually, it is possible to use all of the heap
memory, in which case a run time error will occur. Memory which is no longer required needs to be
freed (released) so that the heap memory does not run out.

The method of releasing heap memory which is no longer required is different with the Logic Engine
to how it is normally performed in Pascal. A heap memory manager is very complex, and needs to
cope with the fragmentation of heap memory as it is allocated and then freed up again. In the Logic
Engine, heap memory is released in a block, rather than trying to release individual bits of memory.

The process is as follows :
Record (Mark) the start of the heap memory block which will be later released
Allocate heap memory as required
Release the heap memory when complete. This will release all heap memory allocated since
Marking the start point.

To mark the start of a block, the Mark function is used. It is passed a parameter which is a pointer
(of any type), which stores the address of the start point in the heap. The example below shows a
pointer being allocated as the Mark parameter, the Mark statement, usage of memory and finally the
release of the memory.

 { var }
 MarkPtr : ^integer;
 x, y, z : ^MyDataStructure;
 { … }
 { main program }
 mark(MarkPtr);
 New(x);
 New(y);
 New(z);
 { use x, y and z }
 release(MarkPtr); { free up heap memory used by x, y and z }

Note that you do not need to worry about releasing memory if :
you are not using pointers; or
if you are using pointers, but once allocated, they are used for the rest of the duration that the
Logic Engine is running

4.32.7 Sets

Applicability

Colour C-Touch only.

Sets exist in every day life. They are a way of classifying common types into groups. In Pascal, sets
contain a range of limited values, from an initial value through to an ending value.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 259

Consider the following set of integer values :
1, 2, 3, 4, 5, 6, 7, 8, 9, 10

This is a set of numbers (integers) whose set value ranges from 1 to 10. To define this as a set type
in Pascal, we would use the following syntax.

type

 numberset = set of 1..10;

var

 My Numbers : numberset;

The type statement declares a new type called numberset, which represents a set of integer values
ranging from 1 as the lowest value, to 10 as the highest value. The value 1..10 means the numbers 1
to 10 inclusive. We call this the base set, that is, the set of values from which the set is taken.

The base set is a range of limited values. For example, we can have a set of char, but not a set of
integers, because the set of integers has too many possible values, whereas the set of characters is
very limited in possible values.

The var declaration makes a working variable in our program called MyNumbers, which is a set and
can hold any value from the range defined in numberset.

See also :
Set Operations
Set Example

4.32.7.1 Set Operations

Applicability

Colour C-Touch only.

The typical operations associated with sets are,
assign values to a set
determine if a value is in one or more sets
set addition (UNION)
set subtraction (DIFFERENCE)
set commonality (INTERSECTION)

Assigning Values to a set

The statement :
MyNumbers := [1, 2];

places the values 1 and 2 in the set.

An empty set can be created with
MyNumbers := [];

The statement
MyNumbers := [2..6];

assigns a subset of values (integer 2 to 6 inclusive) from the range given for the set type numberset.
Please note that assigning values outside the range of the set type from which MyNumbers is
derived will generate an error, thus the statement

MyNumbers := [6..32];

is illegal, because MyNumbers is derived from the base type numberset, which is a set of integer

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 260

values ranging from 1 to 10. Any values outside this range are considered illegal.

Set Union

Set union is essentially the addition of sets. Consider the following statements :
MyNumbers := [1, 2];

MyNumbers := MyNumbers + [4];

MyNumbers now contains the elements 1, 2 and 4.

Set Difference

Set difference is essentially the subtraction of sets. Consider the following statements :
MyNumbers := [1, 2];

MyNumbers := MyNumbers - [1];

MyNumbers now contains the only the element 2.

Determining if a value is in a set

To determine whether an element is in a set, the "in" operator is used :
MyNumbers := [1, 2];

Test := 1 in MyNumbers;

In the above case, the boolean variable Test will be true.

Set Commonality (Intersection)

The set commonality or intersection operator (*) is used to determine which elements are common
to two sets. For example :

Set1 := [1..5];

Set2 := [4..9];

Set3 := Set1 * Set2;

Will result in Set2 containing [4, 5], as these are the only two elements common to both sets.

4.32.7.2 Set Example

If you wanted to record the state that the home security system was in, you could define an
enumerated type :

TSecurityMode = (Disarmed, Armed, Away, Home, Night);

You could then define a variable of this type and use it :

{ var section }

SecurityMode : TSecurityMode;

{ module section }

if (Time = sunset) and (SecurityMode in [Away, Night]) then ...

You could define a set of modes :

{ var section }

PartiallyArmed : set of TSecurityMode;

and assign a set to it :

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 261

{ initialisation section }

PartiallyArmed := [Armed, Away, Home, Night];

Then it can be used in your Logic :

{ module section }

if SecurityMode in PartiallyArmed then ...

4.32.8 Tutorial 11

Question 1

What is the output of the following :

{ var }
 numbers : ARRAY [1..5] of integer;
 loop : integer;

{ main program }
numbers[1] := 7;
numbers[2] := 13;
numbers[3] := numbers[2] - 1;
numbers[4] := numbers[3] DIV 3;
numbers[5] := numbers[3] DIV numbers[4];
for loop := 1 to 5 do
 writeln('Numbers[',loop,'] is', numbers[loop]);

Tutorial Answers

4.33 Files

A file is a collection of information, usually stored on a computer hard disk. This information is
accessed via means of a file variable.

Before a file variable can be used, it must be associated with an external file through a call to the
AssignFile procedure. The external file stores the information written to the file or supplies the
information read from the file. For security reasons, only files in the project directory (the directory
where your project is stored) can be accessed.

Once the association with an external file is established, the file variable must be "opened" to
prepare it for input or output. An existing file can be opened via the Reset procedure, and a new file
can be created and opened via the Rewrite procedure. Text files opened with Reset are read-only
and text files opened with Rewrite and AppendFile are write-only.

When a program completes processing a file, the file must be closed using the standard procedure
CloseFile. After a file is closed, its associated external file is updated. The file variable can then be
associated with another external file.

The Logic Engine only supports text files, not typed files. Text files are arranged as a sequence of

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 262

variable length lines :
Each line consists of a sequence of characters.
Each line is terminated with a special character, called END-OF-LINE (EOLN)
The last character in the file is another special character, called END-OF-FILE (EOF)

The Logic Engine pre-defines two file variables for use. They are called file1 and file2. Additional file
variables can not be created. This means that you can have a maximum of two files open at once. It
does not limit the number of different files which can be accessed though.

Note : Files used by logic will not automatically be included in the Project Archive. See
the Exporting to an Archive topic for details of adding files to the archive.

See also UTF-8 Example
4.33.1 AssignFile Procedure

The AssignFile procedure assigns a file name to a file variable.

Applicability

Colour C-Touch only.

Syntax

AssignFile(FileVariable, FileName);

FileVariable is a file variable (either file1 or file2)
FileName is a string

Description

This associates the name of a file on the disk (in the project directory) with the file variable.

Example

To associates the file1 variable with the file "MyFile.txt" :
AssignFile(file1, 'MyFile.txt');

4.33.2 Reset Procedure

The Reset procedure opens an existing file for reading.

Applicability

Colour C-Touch only.

Syntax

Reset(FileVariable);

FileVariable is a file variable (either file1 or file2)

Description

Reset opens the existing external file with the name assigned to FileVariable. An error results if no
existing external file of the given name exists. If FileVariable is already open, it is first closed and
then reopened. The current file position is set to the beginning of the file.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 263

Example

To reset the file associated with the file1 variable :
Reset(file1);

4.33.3 Rewrite Procedure

The ReWrite procedure creates a new file and opens it for writing.

Applicability

Colour C-Touch only.

Syntax

ReWrite(FileVariable);

FileVariable is a file variable (either file1 or file2)

Description

Rewrite creates a new external file with the name assigned to FileVariable. FileVariable is a variable
associated with an external file using AssignFile.

If an external file with the same name already exists, it is deleted and a new empty file is created in
its place.

If FileVariable is already open, it is first closed and then re-created. The current file position is set to
the beginning of the empty file.

After calling Rewrite, Eof(FileVariable) is always True.

Example

To ReWrite the file associated with the file1 variable :
ReWrite(file1);

4.33.4 Reading from Files

The syntax for reading file data is:
Read(FileName, Variable_List);

FileName is the name of a file variable (either file1 or file2)
Variable_List is a series of variable identifiers separated by commas.

The read procedure, however, does not go to the next line. This can be a problem with character
input, because the end-of-line character is read as a space.

To read data and then go on to the next line, use :
ReadLn(FileName, Variable_List);

Examples

Suppose you had the following data in a file, and variables a, b, c, and d were all integers.
45 97 3
1 2 3

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 264

This would be the result of various statements:

Statement(s) a b c d
read (file1, a); read (file1, b); 45 97
readln (file1, a); read (file1, b); 45 1
read (file1, a, b, c, d); 45 97 3 1
readln (file1, a, b); readln (file1, c, d); 45 97 1 2

The read statement does not skip to the next line unless necessary, whereas the readln statement
is just a read statement that skips to the next line at the end of reading.

When reading integers, all spaces are skipped until a numeral is found. Then all subsequent
numerals are read, until a non-numeric character is reached (including, but not limited to, a space).

Variables of any Type can be read from a file.

4.33.5 AppendFile Procedure

The AppendFile procedure prepares an existing file for adding text to the end.

Applicability

Colour C-Touch only.

Syntax

AppendFile(FileVariable);

FileVariable is a file variable (either file1 or file2)

Description

Call Append to ensure that a file is opened with write-only access with the file pointer positioned at
the end of the file. FileVariable is a text file variable and must be associated with an external file
using AssignFile. If no external file of the given name exists, an error occurs. If FileVariable is
already open, it is closed, then reopened. The current file position is set to the end of the file.

Example

To prepare the file associated with the file1 variable for having text appended to it :
AppendFile(file1);

4.33.6 Writing to Files

Writing to files is the same as using the Write and WriteLn procedures for displaying data, except
that the file name is included as a parameter :

Write(FileName, Argument_List);

WriteLn(FileName, Argument_List);

Instead of writing to the Logic Engine results screen, the data will be written to the file.

Examples

To write "the result is" followed by the value of variable i to file1 :
WriteLn(file1, 'the result is', i);

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 265

4.33.7 CloseFile Procedure

The CloseFile procedure closes a file.

Applicability

Colour C-Touch only.

Syntax

CloseFile(FileVariable);

FileVariable is a file variable (either file1 or file2)

Description

This closes the file and its associated external file is updated. The file variable can then be
associated with another external file.

Example

To close the file associated with file1 :
CloseFile(file1);

4.33.8 EOF Function

The EOF function tests whether the file position is at the end of a file.

Applicability

Colour C-Touch only.

Syntax

EOF(FileVariable);

FileVariable is a file variable (either file1 or file2)

Description

Eof tests whether the current file position is the end-of-file. Eof(FileVariable) returns True if the
current file position is beyond the last character of the file or if the file is empty; otherwise, Eof(F)
returns False.

Example

To perform an action if the file1 is not at the end :
if not Eof(file1) then ...

4.33.9 EOLN Function

The EOLN function tests whether the file pointer is at the end of a line.

Applicability

Colour C-Touch only.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 266

Syntax

EOLN(FileVariable);

FileVariable is a file variable (either file1 or file2)

Description

Eoln tests whether the current file position is the end-of-line of a text file. Eoln(FileVariable) returns
True if the current file position is at an end-of-line or if Eof(FileVariable) is True; otherwise, Eoln
(FileVariable) returns False.

Example

To perform an action if the file1 is not at the end of a line :
if not Eoln(file1)then ...

4.33.10 FileExists Function

The FileExists function returns whether the file exists.

Applicability

Colour C-Touch only.

Syntax

FileExists(FileName)

FileName is a String containing the file name (without the path).

Description

This returns a Boolean value. If the file exists in the project directory, the result is true, otherwise it
is false.

Example

To check if a file exists before opening the file for reading :

if FileExists('MyFile.txt') then
begin
 AssignFile(file1, 'MyFile.txt');
 Reset(file1);
 ...
 CloseFile(file1);
end;

4.33.11 File Example

For this example, we have an array of data which we need to store and recover after a power failure.

An array called LevelArray stores 100 integers. Calling the SaveData Procedure below will save the
data. This needs to be done on a regular basis, but not too often. A period of around 10 to 30
minutes will provide a reasonable balance between ensuring that relatively recent data is available
following a power failure, but without excessive use of the computer hard disk (or flash disk in Colour

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 267

C-Touch).

procedure SaveData;
var
 i : integer;
begin
 AssignFile(file1, 'data.txt');
 ReWrite(file1);
 for i := 1 to 100 do
 WriteLn(file1, LevelArray[i]);
 CloseFile(file1);
end;

procedure ReadData;
var
 i : integer;
begin
 AssignFile(file1, 'data.txt');
 Reset(file1);
 for i := 1 to 100 do
 if not eof(file1) then
 ReadLn(file1, LevelArray[i]);
 CloseFile(file1);
end;

You need to call ReadData when the logic first start. The Initialisation section of the code is a good
place for this.

Note that the first time you run this, the data file will not exist and so the ReadData procedure will
fail. There are three ways around this :
1. Add the SaveData procedure to the code first. Wait for it to save the data, then add the ReadData
procedure.
2. Create a dummy 'data.txt' file.
3. Use the FileExists Function to check that the file exists before trying to read it.

4.33.12 Tutorial 12

Question 1

A file called "data.txt" contains 10 lines, each containing a single integer. Read the integers into an
integer array called Data.

Tutorial Answers

4.34 ZigBee Functions
the Logic Engine is to provide control and monitoring of ZigBee.

There are a series of functions provided for access to ZigBee levels and states :

SetZigbeeEndpointLightingLevel
SetZigbeeGroupLightingLevel
SetZigbeeScene
SetZigbeeEndpointCurtainLevel
SetZigbeeEndpointCurtainStop
SetZigbeeGroupCurtainLevel
SetZigbeeGroupCurtainStop

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 268

GetZigbeeEndpointLightingLevel
GetZigbeeGroupLightingLevel
StopZigbeeEndpointLightingRamp
StopZigbeeGroupLightingRamp

4.34.1 SetZigbeeEndpointLightingLevel

The SetZigbeeEndpointLightingLevel procedure sets the level of a ZigBee Endpoint.

Syntax

SetZigbeeEndpointLightingLevel(Network, Node, Endpoint, NewLevel, RampRate);

Network is an Integer or Network Tag.
Node is an integer or tag
Endpoint is an Integer or tag.
NewLevel is an Integer, Percent or Level Tag
RampRate is an integer (number of seconds) or Ramp Rate Tag

Description

The Endpoint on the selected Node and Network gets set to the NewLevel, with a specified Ramp
Rate. If you select a ramp rate other than the standard ramp rates, it will choose the closest one.

Example

To set the value of the Endpoint called "Ulti 2 Gang Dimmer 1 Channel" on the "Ulti 2 Gang Dimmer
1" Node on "My Network" to level 128 over 4 seconds :
 SetZigbeeEndpointLightingLevel("My Network", "Ulti 2 Gang Dimmer 1", "Ulti
2 Gang Dimmer 1 Channel 1", 128, 4);

4.34.2 SetZigbeeGroupLightingLevel

The SetZigbeeGrouptLightingLevel procedure sets the level of a ZigBee Group.

Syntax

SetZigbeeGroupLightingLevel(Network, Group, NewLevel, RampRate);

Network is an Integer or Network Tag.
Group is an integer or tag
NewLevel is an Integer, Percent or Level Tag
RampRate is an integer (number of seconds) or Ramp Rate Tag

Description

The Group on the selected Network gets set to the NewLevel, with a specified Ramp Rate. If you
select a ramp rate other than the standard ramp rates, it will choose the closest one.

Example

To set the value of the Group called "Group 3784" on "My Network" to level 128 over 4 seconds :
SetZigbeeGroupLightingLevel("My Network", "Group 3784", 128, 4);

4.34.3 SetZigbeeScene

The SetZigbeeScene procedure triggers the ZigBee scene.

Syntax

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 269

SetZigbeeScene(Network, Group, Scene);

Network is an Integer or Network Tag.
Group is an integer or tag
Scene is an integer or tag

Description

The Scene on the selected Network gets triggered.

Example

To trigger the scene called "Scene 3784.1" on ZigBee Group "Group 3784" on "My Network" :
SetZigbeeScene("My Network", "Group 3784", "Scene 3784.1");

4.34.4 SetZigbeeEndpointCurtainLevel

The SetZigbeeEndpointCurtainLevel procedure sets the position of a ZigBee endpoint curtain
controller.

Syntax

SetZigbeeEndpointCurtainLevel(Network, Node, Endpoint, NewLevel);

Network is an Integer or Network Tag.
Node is an integer or tag
Endpoint is an Integer or tag.
NewLevel is an Integer, Percent or Level Tag

Description

The curtain controller Endpoint on the selected Node and Network gets set to position given by
NewLevel. The rate at which the curtain controller moves is programmed in the curtain controller.
To get the position of the curtain use the function GetZigbeeEndpointLightingLevel.

Example

To set the position of the Endpoint curtain controller called "Ulti 2 Gang Dimmer 1 Channel" on the
"Ulti 2 Gang Dimmer 1" Node on "My Network" to position 128 :
 SetZigbeeEndpointLightingLevel("My Network", "Ulti 2 Gang Dimmer 1", "Ulti

2 Gang Dimmer 1 Channel 1", 128);.
4.34.5 SetZigbeeEndpointCurtainStop

The SetZigbeeEndpointCurtainStop procedure tells the ZigBee endpoint curtain controller to stop
moving the curtain.

Syntax

SetZigbeeEndpointCurtainStop(Network, Node, Endpoint);

Network is an Integer or Network Tag.
Node is an integer or tag
Endpoint is an Integer or tag.

Description

The curtain controller Endpoint on the selected Node and Network gets told to stop moving. The

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 270

position of the curtain will be broadcast by the curtain controller when it stops moving.
To read the position of the curtain use the function GetZigbeeEndpointLightingLevel.

Example

To stop the Endpoint curtain controller called "Ulti 2 Gang Dimmer 1 Channel" on the "Ulti 2 Gang
Dimmer 1" Node on "My Network" :
 SetZigbeeEndpointCurtainStop("My Network", "Ulti 2 Gang Dimmer 1", "Ulti 2
Gang Dimmer 1 Channel 1");.

4.34.6 SetZigbeeGroupCurtainLevel

The SetZigbeeGroupCurtainLevel procedure sets the position of a ZigBee group curtain controller.

Syntax

SetZigbeeGroupCurtainLevel(Network, Group, NewLevel);

Network is an Integer or Network Tag.
Group is an integer or tag
NewLevel is an Integer, Percent or Level Tag

Description

The curtain controller Group on the selected Network gets set to position given by NewLevel. The
rate at which the curtain controller moves is programmed in the curtain controller.
To get the position of the curtain use the function GetZigbeeGroupLightingLevel.

Example

To set the position of the Endpoint curtain controller called "Group 17493" on "My Network" to
position 128 :
 SetZigbeeGroupCurtainLevel("My Network", "Group 17493", 128);.

4.34.7 SetZigbeeGroupCurtainStop

The SetZigbeeGroupCurtainStop procedure tells the ZigBee group curtain controller to stop moving
the curtain.

Syntax

SetZigbeeGroupCurtainStop(Network, Group);

Network is an Integer or Network Tag.
Group is an integer or tag

Description

The curtain controller Group on the selected Node and Network gets told to stop moving. The
position of the curtain will be broadcast by the curtain controller when it stops moving.
To read the position of the curtain use the function GetZigbeeGroupLightingLevel.

Example

To stop the Group curtain controller called "Group 17493" on "My Network" :
 SetZigbeeGroupCurtainStop("My Network", "Group 17493");.

4.34.8 GetZigbeeEndpointLightingLevel

The GetZigbeeEndpointLightingLevel function returns the level of a ZigBee Endpoint.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 271

Syntax

GetZigbeeEndpointLightingLevel(Network, Node, Endpoint)

Network is an Integer or Network Tag.
Node is an Integer or Application Tag.
Endpoint is an Integer or Group Address Tag.

Description

The integer result is the level of the Endpoint.

Example

To perform an action if the value of Endpoint called "Ulti 2 Gang Dimmer 1" on the Node "Ulti 2 Gang
Dimmer 1 Channel 1" on "My Network" is 255 :

if GetZigbeeEndpointLightingLevel("My Network", "Ulti 2 Gang Dimmer 1",
"Ulti 2 Gang Dimmer 1 Channel 1") = 255 then ...

4.34.9 GetZigbeeGroupLightingLevel

The GetZigbeeGroupLightingLevel function returns the level of a ZigBee Group.

Syntax

GetZigbeeGroupLightingLevel(Network, Group)

Network is an Integer or Network Tag.
Group is an Integer or Application Tag.

Description

The integer result is the level of the Group.

Example

To perform an action if the value of Group called "Group 17493" on "My Network" is 255 :
if GetZigbeeGroupLightingLevel("My Network", "Group 17493") = 255 then ...

4.34.10 StopZigbeeEndpointLightingRamp

The StopZigbeeEndpointLightingRamp procedure tells the ZigBee lighting endpoint stop ramping the
endpoint.

Syntax

StopZigbeeEndpointLightingRamp(Network, Group);

Network is an Integer or Network Tag.
Group is an integer or tag

Description

The lighting Endpoint on the selected Node and Network gets told to stop ramping. The start ramp is
done using the SetZigbeeEndpointLightingLevel command.
To read the level of the endpoint use the function GetZigbeeEndpointLightingLevel.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 272

Example

To stop ramping the Endpoint called "Ulti 2 Gang Dimmer 1 Channel" on the "Ulti 2 Gang Dimmer 1"
Node on "My Network" :
 StopZigbeeEndpointLightingRamp("My Network", "Group 17493");.

4.34.11 StopZigbeeGroupLightingRamp

The StopZigbeeGroupLightingRamp procedure tells the ZigBee lighting group stop ramping the
group.

Syntax

StopZigbeeGroupLightingRamp(Network, Group);

Network is an Integer or Network Tag.
Group is an integer or tag

Description

The lighting Group gets told to stop ramping. The start ramp is done using the
SetZigbeeGroupLightingLevel command.
To read the position of the curtain use the function GetZigbeeGroupLightingLevel.

Example

To stop ramping the Group called "Group 17493" on "My Network" :
 StopZigbeeGroupLightingRamp("My Network", "Group 17493");.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 273

5 Debugging Programs

Most programs, even those created by professionals, contain a certain amount of errors (or "bugs").
The process of discovering and removing these bugs is called "debugging".

5.1 Error Types

There are three types of errors that can occur in a program :
Syntax errors
Run-time errors
Logical Errors

Syntax Errors

Syntax Errors are where the user has entered code that does not follow the correct format (syntax).
An example would be is the user entered :

Level = 0;

instead of
Level := 0;

Syntax Errors are found by the Compiler and generate Compilation Error Messages.

Syntax Errors must be fixed before the program can be compiled and run.

Run-Time Errors

Run-time Errors occur when the program is Running. They generally occur because a value is
outside of the allowable range. For example, the following will cause Run Time Errors :

x := 5 / y; when y = 0
x := MyArray[y]; when y is outside of the bounds of the array
StartTimer(1000000);

Logical Errors

Logical Errors occur when there is an error in the logic of the code, but it still compiles correctly and
runs.

An example would if the user wanted something to occur only at night (between sunset and sunrise).
If they wrote the code :

if (time < sunrise) and (time > sunset) then ...

then the condition would never be true (as the time can never be both before sunrise and after
sunset). The correct code would be :

if (time < sunrise) or (time > sunset) then ...

Logical Errors will not generate error messages. The only way you can find them is by thoroughly
testing the system and observing the behaviour. Once a program is running. Logical Errors are the
most common, and the hardest to find.

Logical errors are the subject of the rest of this chapter.

5.2 Debugging Support Features

The Logic Engine provides the following features to support the debugging of programs.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 274

Run Once

Using the Run Once option allows you to see what happens in one run through the logic engine. This
is easier than trying to see what is happening when it is running full speed.

Displaying Status

At any part of the program it is possible to Display the status of any variable, or just write a
message to the Output Window. This can be useful for determining where the program is going, and
what the values are.

Alternatively, you can write data directly to the screen which can be easier than having to refer to the
Output Window.

Logging

Messages can also be written to the Log file. This is helpful if problems only occur infrequently, and
it is not possible to sit watching the screen continuously, or if it happens to quickly to see what
happened.

Resources

If your program will not run due to a lack of memory, the Resources window can be used to see how
much is being used by what.

Debug Compilation

The Debug Compilation Option can be used to ensure that all array parameters etc are within
bounds.

Halt and Restart Statements

The Halt and Restart statements can be used to terminate the Logic Engine if the user program has
detected some kind of anomaly, or if an error condition arises.

LED Control

The PAC can use the LED to indicate the status of a parameter for debugging.

5.3 Debugging Methods

To debug programs, there are various techniques which can be used. In general, techniques which
are used for debugging software apply equally well to debugging Logic Engine Programs :

Condition Testing
Tracking What Your Program is Doing
Intermittent Errors

5.3.1 Condition Testing

The main aspect of Logic Engine Programs which needs to be tested are the Conditional Logic

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 275

statements. It is easy to make a mistake with the logic, and it is important that every condition be
tested.

It is necessary to test both that the condition is true when you expect it to be true, and to also test
that it is false when you expect it to be false.

To test whether a conditional statement works or not, it is necessary to have the Logic Engine
Running, and to set up the necessary conditions to make the statement be true or false.

As a simple case, consider the code :

if (time = "9:00PM") and (DayOfWeek = "Monday") then
 SetLightingState("Porch Light", ON);

The simplest way to test this is to wait until 9PM on Monday night and see if the Porch Light come
on. This is obviously not a practical solution. A better way is to set the PC time and date to 8:59PM
on a Monday and wait for 1 minute to see if the Porch Light comes on.

Remember to also test the negative condition. You have already tested that the light comes on when
it is 9PM and it is Monday. You should also test 9PM on a Tuesday, and make sure that it doesn't
come on.

The type of things you may need to do in order to test a condition are :
Set the system time and/or date to just before an event is to occur
Set C-Bus levels to a particular level
Set System IO Variables to particular values

5.3.2 Tracking What Your Program is Doing

Sometimes it is difficult to work out what your program is doing. It may look like a condition is true,
but the statement is not being executed. The most common way to solve these problems is to put
statements in your code to display or log some data to indicate what is happening.

For example, if you had some code :

if counter = 5 then
 SetLightingState("fan", OFF);

If the fan is not going off, it may be hard to know why. Putting a WriteLn or LogMessage statement
immediately before had will tell you what is happening. For example, you could add the following line
of code :

WriteLn('Counter = ', Counter);
if counter = 5 then
 SetLightingState("fan", OFF);

In this case, the value of the Counter will be displayed in the Output Window every time the Logic
Engine is Run. If you can see that the Counter variable has a value of 124, then the chances are that
you may not have initialised the value properly, or may not have reset it.

When you have debugged the code, remember to remove any of these debugging statements.

5.3.3 Intermittent Errors

Sometimes problems (errors) only occur occasionally, and they are hard to observe and debug.
These are referred to as "intermittent" problems, and are the most difficult to track down.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 276

The best method of trying to identify the source of the problems is to try to determine under what
circumstances the problem occurs. If there is a definite pattern, then this may provide the necessary
information to locating the source of the problem. Waiting for the problem to occur enough times to
find a pattern can be a very time consuming and expensive exercise.

Another technique to support the locating of intermittent errors is to review the Logs to find out what
was happening at the time of the problem. If necessary, use the LogMessage procedure to write
data to the log to make this process simpler.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 277

6 Error Messages

Error messages may occur during Compilation or at Run Time. Error messages are displayed in the
Output Window. Compile errors start with a "C" followed by a number. Run-time errors start with an
"R".

To find the source of an error, double click on the error message in the Output Window. The code
will be displayed in the Code Window, with the cursor at the position of the error. For run-time errors,
the cursor will be placed at the start of the line.

See also Compilation Errors (C000 - C999), Run Time Errors (R000 - R999)

6.1 Compilation Errors

Compile errors occur during Compiling when there is a syntax error in the entered code.

To find where in the code an error is, just double click on the error message, and the cursor will be
positioned at the position in the code where the compiler detected the error. It may be necessary to
look either side of the cursor position, or even on the lines above to find the root cause of the error.

Note that a single error may result in more than one error message, depending on whether the
compiler can determine what was intended. If more than one error message is reported, it is always
best to fix the first error in the list of errors first. If the following error messages make sense, then fix
them at the same time, otherwise Compile the code again and fix the first error in the new list.

Compilation Errors must be fixed before the program can be compiled and run.

The Compilation Errors are listed below.

Error C001 : Error in simple type

A Simple Type was expected, but was not found.

Error C002 : Identifier expected

An Identifier was expected, but was not found.

Error C003 : "program" expected

The reserved word "program" was expected, but was not found. This error should never be
encountered.

Error C004 : ")" expected

A right parenthesis ")" was expected, but was not found.

Error C005 : ":" expected

A colon ":" was expected, but was not found.

Error C006 : Illegal symbol

An illegal symbol was found. Check the code syntax.

Error C007 : Error in parameter list

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 278

An illegal symbol was found in a Parameter List.

Error C008 : "of" expected

The reserved word "of" was expected, but was not found.

Error C009 : "(" expected

A left parenthesis "(" was expected, but was not found.

Error C010 : Error in type

An error occurred in a Type declaration.

Error C011 : "[" expected

A left parenthesis "[" was expected, but was not found.

Error C012 : "]" expected

A right parenthesis "]" was expected, but was not found.

Error C013 : "end" expected

The reserved word "end" was expected, but was not found.

Error C014 : ";" expected

A semi-colon ";" was expected, but was not found.

Error C015 : Integer expected

An Integer constant was expected, but was not found.

Error C016 : "=" expected

An equals symbol "=" was expected, but was not found.

Error C017 : "begin" expected

The reserved word "begin" was expected, but was not found.

Error C018 : Error in declaration part

An error was found in the declaration part of a Block.

Error C019 : Error in field-list

An error was found in the field list of a Record.

Error C020 : "," expected

A comma "," was expected, but was not found.

Error C021 : "." expected

A period "." was expected, but was not found. The end of the Program was expected. Most likely

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 279

cause is begin/end statements not matched up.

Error C050 : Error in constant

A Constant was expected, but was not found.

Error C051 : ":=" expected

An assignment symbol ":=" was expected, but was not found.

Error C052 : "then" expected

The reserved word "then" was expected, but was not found.

Error C053 : "until" expected

The reserved word "until" was expected, but was not found.

Error C054 : "do" expected

The reserved word "do" was expected, but was not found.

Error C055 : "to"/"downto" expected

The reserved word "to" or "downto" was expected, but was not found.

Error C058 : Error in factor

An error occurred in a factor. Check that brackets match up.

Error C059 : Error in variable

An error occurred in a variable selector (array index, record field or pointer reference).

Error C101 : Identifier declared twice

An Identifier has been declared twice. Remove one of the declarations.

Error C102 : Low bound exceeds high bound

The low bound of a sub-range is greater than the high bound.

Error C103 : Identifier is not of appropriate class

The Identifier is of the wrong Type.

Error C104 : Identifier is not declared

The Identifier has not been declared. Check that the identifier has been declared and that the
spelling is correct.

Error C105 : Sign not allowed

A sign "-" or "+" is not allowed.

Error C106 : Number expected

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 280

A number was expected, but was not found.

Error C107 : Incompatible subrange types

A Sub-Range of a different type was expected.

Error C108 : File not allowed here

A File variable is not allowed at this point in the code.

Error C109 : Type must not be real

A Real Type is not allowed. Change to an appropriate type.

Error C110 : Tagfield type must be scalar or subrange

Only a scalar or Sub-Range is allowed.

Error C111 : Incompatible with tagfield type

Constant type does not match field type.

Error C113 : Index type must be scalar or subrange

Array index must be scalar or Sub-Ranges.

Error C114 : Base type must not be real

Set base Type must be scalar or Sub-Range.

Error C115 : Base type must be scalar or subrange

Set base Type must be scalar or Sub-Range.

Error C116 : Error in type of standard procedure parameter

Error in Parameters of a standard procedure.

Error C117 : Unsatisfied forward reference

A Forward Declaration of a procedure, function or pointer was not completed.

Error C119 : Forward declared; repetition of parameter list not allowed

A Forward Declaration of a procedure, function or pointer was repeated.

Error C120 : Function result type must be scalar, subrange or pointer

A function can only return a result which is scalar, Sub-Range or pointer.

Error C121 : File value parameter not allowed

A File variable can not be passed as a value parameter.

Error C122 : Forward declared function repetition of result type not allowed

The function result Type can not be repeated for Forward Declared functions.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 281

Error C123 : Missing result type in function declaration

The function result Type was missing in the Forward Declaration.

Error C124 : Field precision format for real only

Field precision in Write statement only allowed for Real types.

Error C125 : Error in type of standard function parameter

Error in type of a standard function/procedure Parameter.

Error C126 : Number of parameters does not agree with declaration

Error in number of Parameters in a function/procedure. Either too many or not enough parameters
have been entered.

Error C128 : Result type of parameter function does not agree with declaration

Function result type does not match the function declaration.

Error C129 : Type conflict of operands

The two operands are not Type compatible.

Error C130 : Expression is not of set type

A set expression was expected. For example, a set variable or a set constant (eg [1, 2, 4, 7]).

Error C131 : Tests on equality allowed only

Only the equality operator "=" can be used for this type. Other operators are not allowed.

Error C132 : Strict inclusion not allowed

The ">" and "<" operators can not be used with sets.

Error C133 : File comparison not allowed

Files can not be compared.

Error C134 : Illegal type of operand(s)

The multiply (*) Operator can not be used with these operands.

Error C135 : Type of operand must be boolean

The operands must be boolean.

Error C136 : Set element type must be scalar or subrange

Set elements must be scalar or Sub-Range.

Error C137 : Set element types not compatible

The set element is not compatible with the set type.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 282

Error C138 : Type of variable is not array

An Array variable type was expected, but the variable is not an array type.

Error C139 : Index type is not compatible with declaration

The Array index type does not match the array declaration.

Error C140 : Type of variable is not record

A Record variable type was expected, but the variable type is not a record.

Error C141 : Type of variable must be pointer

A Pointer variable type was expected, but the variable is not a pointer.

Error C142 : Illegal parameter substitution

The Parameter type is not valid.

Error C143 : Illegal type of loop control variable

Only scalar or Sub-Range types can be used as loop variables.

Error C144 : Illegal type of expression

Expression must be scalar.

Error C145 : Type conflict

The types are not compatible.

Error C146 : Assignment of files not allowed

Files can not be assigned.

Error C147 : Label type incompatible with selecting expression

Case label type is not compatible with the case selecting expression.

Error C148 : Subrange bounds must be scalar

The Sub-Range bounds must be scalar.

Error C149 : Index type must not be integer

Array index type must be scalar, but not Integer.

Error C150 : Assignment to standard function is not allowed

Can not assign a value to a standard Function.

Error C151 : Assignment to formal function is not allowed

Can not assign to a formal Function.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 283

Error C152 : No such field in this record

The specified Record field does not exist.

Error C154 : Actual parameter must be a variable

The Parameter must be a variable.

Error C155 : Control variable must neither be formal nor non local

For statement control variable must be a local variable.

Error C156 : Multidefined case label

Case label has been defined more than once. Remove the duplicate case label.

Error C157 : Too many cases in case statement

The range of the case labels has exceeded the maximum. The difference between the lower bound
and the upper bound of the case statement must be less that 1000.

Error C158 : Missing corresponding variant declaration

Error in Pointer "new" statement.

Error C159 : Real or string tagfields not allowed

Error in Pointer "new" statement.

Error C160 : Previous declaration was not forward

Function / Procedure was previously declared without a Forward Declaration.

Error C161 : Again forward declared

Function / Procedure was previously declared with a Forward Declaration.

Error C162 : Parameter size must be constant

Error in Pointer "new" statement.

Error C165 : Multidefined label

Label defined more than once. Labels are not available to the user in the logic engine, but are
used in the implementation of the Modules. Remove any label definitions.

Error C166 : Multideclared label

Label declared more than once. Labels are not available to the user in the logic engine, but are
used in the implementation of the Modules. Remove any label declarations.

Error C167 : Undeclared label

Label has not been declared. Labels are not available to the user in the logic engine, but are used
in the implementation of the Modules. Remove the use of any labels.

Error C168 : Undefined label

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 284

Label has not been defined. Labels are not available to the user in the logic engine, but are used in
the implementation of the Modules. Remove the use of any labels.

Error C169 : Error in base set

Base Set type is illegal.

Error C177 : You may only assign to the identifier of a function in the body of that function

A Function result can only be assigned within the body of the function.

Error C178 : Duplicated variant part in record declaration

Record variant part duplicated. Remove the duplication.

Error C179 : Function not supported for this Project type

This function is not supported for the selected Project type (HomeGate, Schedule Plus, Colour C-
Touch, PAC, C-Touch Mark II). Some Project types only support particular functions. Refer to the
relevant section of the help file for details of which functions are supported for which project types.

Error C180 : Once statements can only be used inside Modules

Once Statements only work within a Module and can not be used in the Initialisation section,
Functions or Procedures.

Error C181 : Use of reserved words "input" or "output"

The reserved word "input" or "output" has been used in the logic code. These words can not be
used for Identifiers.

Error C201 : Error in real constant: digit expected

A digit is missing from a Real constant.

Error C202 : String constant must not exceed source line

A string constant has gone onto the next line, or the closing ' is missing.

Error C203 : Integer constant exceeds range

An Integer constant has exceeded the allowed range (-2147483648 to 2147483647).

Error C250 : Too many nested scopes of identifiers

The nesting of identifiers has exceeded the limit (20).

Error C251 : Too many nested procedures and/or functions

The nesting of procedures and/or functions has exceeded the limit (20).

Error C254 : Too many long constants

The maximum number of long constants has been exceeded. A maximum of 1000 is allowed. A
long constant is a non-integer constant, such as a Real number, a Set or a String. These are not
necessarily constants defined in the Constants section, but can be any constant value used in the

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 285

code, such as the string in :
WriteLn('Value = ', v);

Error C261 : Tag Error

There is an error in a Tag. Ensure that the spelling and case is exactly correct.

Error C262 : Percent constant out of range (0 - 100)

A percentage constant can only be from 0 to 100.

Error C263 : System IO Type is invalid

The System IO variable type is invalid.

Error C265 : Tag must not exceed source line

A Tag has gone onto the next line, or the closing " is missing.

Error C266 : String constant too long

A String Constant is longer than the maximum allowed (255 characters).

Error C267 : Special Function not supported in logic

The selected Special Function is not supported by the logic engine.

Error C268 : Too many ConditionStaysTrue statements

The is a limit to how many ConditionStaysTrue functions can be used.

Error C269 : This in-built system IO variable can not be set

The In-Built System IO Variable is "read only" and can not be set.

Error C270 : Semicolon not allowed before "else"

A semicolon is not allowed immediately before an else statement.

Error C271 : Too many HasChanged statements

There is a limit to how many HasChanged Functions can be used..

Error C272 : Property Type is invalid

The Page Property or Component Property type does not match the function type.

Error C273 : Only Trigger Control Application can be used

Only the Trigger Control Application can be used for some C-Bus functions.

Error C274 : Invalid Level

C-Bus levels can only be between 0 and 255 (100%) inclusive.

Error C275 : Invalid Measurement Application Unit/Channel

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 286

The C-Bus Measurement Application Unit Id and/or Channel does not exist. Use the Measurement
Application Manager to add this channel.

Error C304 : Element expression out of range

The set expression is outside of the allowable range.

Error C305 : Procedure only allowed within Modules

This procedure is only allowed with a Module.

Error C399 : Feature not implemented

This Pascal feature has not been implemented.

Error C400, C500, C501 : Internal compiler error

An error has occurred within the compiler. Contact technical support for advice.

Scalar Types

A Scalar type is either an Integer, Boolean, Char or Enumerated Type. It does not include Real or
String types.

Compilation Warnings

A Compilation Warning is a warning that something is most likely a problem, but the logic will be
allowed to run anyway. The compiler warnings are listed below :

Warning W001 : Tag too long (more than 31 characters) to be downloaded to Colour C-Touch.

The tag is too long to be able to be downloaded to Colour C-Touch. The tag will be shortened
before being transferred to the Colour C-Touch. This will cause a compile error in the Colour C-
Touch because the tag will no longer be recognised. To fix this, edit the tag using the C-Bus
ToolKit and make it no more than 31 characters in length.

Warning W004 : Scene will use more than 75% of the PAC scan time.

Executing the Scene will use more than 75% of the PAC capacity. It is possible that this will
cause the PAC to reset. See How Much Logic Is Possible.

Warning W005 : It is recommended that a Scene be used for sending multiple C-Bus commands.

Sending a series of C-Bus commands as separate messages can be inefficient and makes the
logic code longer and harder to read. It is recommended that if more than three C-Bus commands
are to be sent, then a Scene should be used.

Warning W006 : Function not supported for this Project type

This function is not supported for the selected Project type (HomeGate, Schedule Plus, Colour C-
Touch, PAC). Some Project types only support particular functions. Refer to the relevant section
of the help file for details of which functions are supported for which project types. This warning is
generated when the Allow use of all Functions for Testing option is selected instead of
generating error C179 to allow the function to be used temporarily for testing purposes.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 287

Warning W007 : Tag has spaces at start or end

A Tag has one or more spaces at the start or end of the Tag. These spaces are ignored, but they
should be removed for "correctness".

Warning W008 : String constants longer than 50 characters may cause problems.

By default, Strings are 50 characters. Unless you have defined a string variable to be longer than
this, using a string constant will which is longer than 50 characters will cause it to be truncated.

6.2 Run Time Errors

There are three classes of run-time errors :
Errors R000 - R099 are errors which can optionally be ignored.
Errors R100 - R199 are critical errors, which can cause a re-start of the Logic Engine
Errors R200 - R299 are load errors, and can not be recovered from

Errors

The errors in the range R001 - R099 are non-critical errors which the Logic Engine can often safely
ignore. They will result in the Logic Engine not doing what you want, but the Logic Engine can
recover and continue. The Logic Engine Options allow you to ignore these errors and continue, or to
re-start the Logic Engine.

Error R002 : Invalid System IO number

The System IO number is invalid.

Error R003 : Invalid Timer number

The Timer number is invalid.

Error R004 : Invalid Module number

The Module number is invalid.

Error R005 : Invalid Scene number

The Scene number is invalid.

Error R006 : Invalid Page number

The Page number is invalid.

Error R007 : Invalid System I/O Type

The System IO type is not compatible.

Error R008 : Exceeded maximum number of Instructions

The maximum number of instructions per scan has been exceeded.

Error R009 : C-Bus Messages are being sent on every scan

C-Bus messages are being transmitted on every scan. This can cause problems on C-Bus by
using too much bandwidth. See Logic Engine Options.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 288

Error R010 : Too many graphics commands are being executed

The maximum number of graphics commands have been exceeded. Check that a ClearScreen
procedure is being used.

Error R011 : Minimum delay time is 0.2 second

The minimum Delay is 0.2 second. It is not possible to delay for less than this time.

Error R012 : Program execution failed

The Execution of a program failed. The reason for the failure will usually be given which will provide
a clue as to the resolution of the problem.

Error R013 : Logic engine stalled. Catch-up started.

This error only occurs in a PAC or C-Touch. It results from the logic exceeding 100% of capacity
for an extended period of time. See How Much Logic Is Possible.

Error R014 : Socket Error

A socket function (TCP/IP, UDP, Ping or DNS) has failed. The error functions can be used to
obtain socket error details:

ClientSocketError Function
ServerSocketError Function
UDPSocketError Function
GetDNSLookupResult Function

A message with some details will appear in the log.

Critical Errors

The errors in the range R100 - R199 are Critical Errors which the Logic Engine can not ignore. These
errors will cause the Logic Engine to stop immediately. The user can select for the Logic Engine to
automatically re-start following a Critical Error if required.

Error R100 : Other error

An unlisted type of error has occurred.

Error R101 : Reading from an output file

An attempt was made to read from an output file.

Error R102 : Writing to an input file

An attempt was made to write to an input file.

Error R103 : eof / eoln used on an output file

An EOF or EOLN function was used on an output file.

Error R104 : Memory overflow

The amount of memory allocated has been fully used.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 289

Error R105 : Divide by zero

A division by zero was attempted.

Error R106 : Illegal pointer value

A pointer was pointing to an illegal memory value.

Error R107 : Value out of range

A value was outside of the allowable range.

Error R108 : <,<=,>,>= used with an address

Illegal operations were attempted on an address.

Error R109 : File Not Found

The specified file could not be found.

Error R110 : Illegal set operation

An illegal operation was applied to a set.

Error R111 : Invalid Serial Port number

The Serial Port number was invalid.

Error R199 : Logic has taken too long

You have too much logic to run in the PAC. See the How Much Logic Is Possible topic and the
Efficient Code topic for details of reducing the size of logic code.

Load Errors

The errors in the range R200 - R299 are Load Errors which the Logic Engine can not ignore, and can
not recover from. These errors occur during the loading of the logic into the Interpreter. The user
program must be changed in order for the Logic Engine to be able to run.

Error R200 : Duplicated label

A label was duplicated. This is an internal compiler error. Contact technical support for
assistance.

Error R201 : Illegal instruction

An illegal instruction was found. This is an internal compiler error. Contact technical support for
assistance.

Error R202 : Integer table overflow

Too many integer constants have been used.

Error R203 : Real table overflow

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 290

Too many real constants have been used.

Error R204 : Illegal character

An illegal character was found. This is an internal compiler error. Contact technical support for
assistance.

Error R205 : Set table overflow

Too many set constants have been used.

Error R206 : Boundary table overflow

Too many arrays have been used.

Error R207 : String table overflow

Too many string constants have been used.

Error R208 : Too much logic to run

You have too much logic to run in the logic engine. See the Efficient Code topic for details of
reducing the size of logic code.

6.3 Resolving Compilation Errors

When a Compilation Error occurs, there will be an error message in the Output Window. The error
number will be displayed, along with the line it which it occurred. To find the source of an error,
double click on the error message in the Output Window. The code will be displayed in the Code
Window, with the cursor at the position of the error.

Always start resolving the error with the first error in the list. A single error can cause a cascade of
error messages, and the later ones may be difficult to identify the cause.

Sometimes it is not clear exactly where the error occurs, and the actual cause of the error may be
some way before the point at which the compiler reported the error.

EXAMPLES

If you had :

procedure Proc1;
begin
 { some code goes here }
end { missing semi-colon }

procedure Proc2;
begin
 { some code goes here }
end;

You would get an error pointing to the start of the Proc2 declaration, event though the error is a
missing semi-colon at the end of the line in the previous procedure (Proc1).

The following code is an example of a very common cause of errors :

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 291

if GetLightingLevel("Outside") > 50% and Time = "9:00PM" then
begin
 { some code goes here }
end;

An error C004 ("illegal symbol") will indicate that there is a problem at the "=" sign. The root cause
of the problem is that the brackets around the two terms are missing. The code should read :

if (GetLightingLevel("Outside") > 50%) and (Time = "9:00PM") then...

The reason for the compiler reporting the error that it does is related to the way the expression gets
evaluated. The "and" has a higher Operator Precedence than the ">" or "=" operators. This means
that the expression is evaluated as :

if GetLightingLevel("Outside") > (50% and Time) = "9:00PM" then...

In this case, the "and" will be interpreted as a Bitwise Operator. This is perfectly legal code up until
the point of the "=", which is why the compiler reports the message there.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 292

7 FAQ

The following sections cover some Frequently Asked Questions regarding the use of the Logic
Engine.

7.1 When to use logic

You should generally only use logic when it is needed. If your requirements can be met through the
use of Scenes, Schedules, Irrigation or other in-built software features, then you should use the built-
in features. There are several reasons for this :
1. The in-built features are much faster and more efficient
2. The in-built features have editors which make them easier to view and edit
3. The in-built features have been thoroughly tested. Writing your own code introduces the possibility
of bugs.

7.2 Using Counters

A counter is just a Variable which is used for counting some event. For example, to count how often
the "Scene Control" group address goes on and then trigger three different Scenes, you would need
to do the following steps.

Declare the counter variable

In the Variables node of the Logic Tree, enter the declaration for an integer Variable :

PressCounter : integer;

Initialise the counter

In the initialisation node of the Logic Tree, initialise the value of the counter :

PressCounter := 0;

Increment the counter

When the "Scene Control" Group gets switched on, increment (add one to) the counter variable (this
code is in a Module) :

once GetLightingState("Scene Control") = ON then
begin
 PressCounter := PressCounter + 1;
 ...

Use the counter

Use the value of the counter variable to determine which Scene to trigger. When the counter gets to
the last value, it is important to reset the counter again.

once GetLightingState("Scene Control") = ON then
begin
 PressCounter := PressCounter + 1;
 if PressCounter = 1 then
 SetScene("Scene 1");
 if PressCounter = 2 then
 SetScene("Scene 2");
 if PressCounter = 3 then
 begin

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 293

 SetScene("Scene 3");
 PressCounter := 0;
 end;
end;

7.3 Program Execution

When the logic first starts, it runs the Initialisation code. From then on, each time the logic is run
(each scan), the code in each of the Modules is run in the order in which they appear in the Logic
Tree. In the case of a logic tree like :

the order of the Modules will be :
1. Refill Control
2. Graphic Control
3. Level Control

The code in each Module is run from the top line of code to the bottom line of code each scan. The
only exceptions to this are :
1. Disabled Modules : when a Module has been disabled, it does not get run until it has been
enabled again. This does not affect the operation of other Modules.
2. When a Module is paused : When a module is paused due to a Delay Procedure or a WaitUntil
Procedure, the module will stop at that point of the code until the delay is complete. When the delay
is complete, the code will continue again. A delay in one Module does not affect any other Modules.
3. The ExitModule Procedure causes all of the rest of the code in the Module to be skipped. This
does not affect any other Modules.

Enabled and Disabled Modules

If a Module is disabled that Module will not be run until it is enabled again. A disabled Module does
not affect any other Modules. The diagram below shows this. The red line shows the order of
execution of the program for a singe scan.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 294

Delayed Modules

If there is a delay (or WaitUntil Procedure) in a Module, the rest of that Module will not be run until
the delay is finished. This delay does not affect any other Modules. The diagram below shows this.

All of Module 1 and 3 runs on every scan. On the first scan, the code in Module 2 up to the point of
the delay runs, then the rest of Module 2 is ignored and the execution jumps to Module 3. On the
second scan, all of Module 2 is ignored, because it is still delaying. When the delay has finished
(scan 3), the rest of Module 2 is run. The next scan will be the same as scan 1 again.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 295

7.4 Random Event Times

Implementing Random Event Times

The random number function can be used to perform an action at a random time. A typical example
is to switch lights on at random times when nobody is at home to make a house look "lived in".

To switch on the lounge room light for two hours starting at a random time between 7:00PM and
8:00PM, the following code could mistakenly be used :

if time = "7:00:00PM" + random("1:00:00") then { This will not work ! }
begin
 SetLightingState("Lounge", ON);
 Delay("2:00:00");
 SetLightingState("Lounge", OFF);
end;

Since the random value will be different each scan, it is possible that the condition will never be true
and the statements will not be executed. To make this style of code work properly, a variable needs
to be used which contains the random value and is not changed each time the expression is
evaluated. For example :

In the Initialisation section :

RandomTime := random("1:00:00");

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 296

In the Module section :

if time = "7:00:00PM" + RandomTime then
begin
 SetLightingState("Lounge", ON);
 Delay("2:00:00");
 SetLightingState("Lounge", OFF);
 RandomTime := random("1:00:00");
end;

The above code still has a weakness in that if the 2 hour delay was changed to be less than an hour,
then the code could be run more than once each day. This is probably not what is required.

For example, if there was only a 10 minute delay and if the RandomTime variable was 300 (5
minutes), then the code would be executed at 7:05PM. After a delay of 10 minutes (7:15PM), the
RandomTime variable gets calculated again. If it gets a new value of 900 (15 minutes), then the code
will be run again at 7:30PM.

The Easy Way of Doing Random Start Times

The simplest way to implement the above requirements is :

if time = "7:00:00PM" then
begin
 Delay(random("1:00:00") + 1);
 SetLightingState("Lounge", ON);
 Delay("2:00:00");
 SetLightingState("Lounge", OFF);
end;

In this case, once the time gets to 7PM, there is a random delay of up to an hour, followed by the
other actions. During the delay period, this Module will wait for the delay to be complete, but other
Modules will continue.

Note that the value of random("1:00:00") could be anywhere between 0 and 3599. A delay of zero
is not allowed, so a value of 1 is added in the code above.

If you want to only do the random timing if a flag called AwayMode is set, then you could use :

if AwayMode and (time = "7:00:00PM") then
begin
 Delay(random("1:00:00") + 1);
 SetLightingState("Lounge", ON);
 Delay("2:00:00");
 SetLightingState("Lounge", OFF);
end;

In this case, once the delay has started, the rest of the events will occur even if the AwayMode flag
changes during the delay. This is probably not what is desired. A better method would be :

if time = "7:00:00PM" then
begin
 Delay(random("1:00:00") + 1);
 if AwayMode then
 SetLightingState("Lounge", ON);
 Delay("2:00:00");
 if AwayMode then

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 297

 SetLightingState("Lounge", OFF);
end;

7.5 Logic Engine Security

The Logic Engine operates within a "sand box" which means that it has a restricted environment to
protect other applications from it and vice versa. Specifically, the Logic Engine restrictions are :

It can only access a section of memory allocated exclusively to it
It can only access files in the project directory
It is only allowed to use a certain amount of processor time

However there are potential "back doors" which could cause security weaknesses :
The Logic Engine can start other applications, which could potentially be malicious. Ensure that
any program or file that you open from the Logic Engine is trustworthy.
TCP/IP sockets and Serial (RS232) connections can be used to communicate with the Logic
Engine. The code performing this communication is entirely at the user's discretion, so care
should be taken as to what can be controlled via these connections.

7.6 Handling Triggers

Because the Logic Engine is not event driven, if two successive C-Bus commands set a C-Bus
Group Address to the same level, then the second one can be missed. If it is important to react to
each of these events, then it is necessary to set the Group Address to a different level after dealing
with an event.

Consider the following code :

once GetTriggerLevel("Logic Triggers") = 255 then

 Macro1;

In this case, if the "Logic Triggers" Group Address is set to level 255, then the Macro1 will be
executed. If the "Logic Triggers" Group Address is set to level 255 again, nothing will happen. The
"Logic Triggers" Group Address needs to be set to a value other than 255 and then back to 255
before Macro1 will be executed again.

If the code is changed to :

once GetTriggerLevel("Logic Triggers") = 255 then

begin

 Macro1;

 SetTriggerLevel("Logic Triggers", 0);

end;

then the level will be reset to 0 after Macro1 is executed. The next time that the Logic Triggers
Group Address is set to level 255, Macro1 will be executed again.

The other possible problem with this code is that if the trigger is set on the first scan of the Logic
Engine, then Macro1 will never run unless something externally sets the trigger to level 0 then back
to level 255 again. The once statement is only executed when an false to true change is seen. A
more reliable way of writing the above code would be :

if GetTriggerLevel("Logic Triggers") = 255 then

begin

 Macro1;

 SetTriggerLevel("Logic Triggers", 0);

end;

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 298

Because the level has been set back to 0 each time, there is no problem with the code being
executed on every scan.

See also Controlling Modules from Components or Schedules

7.7 Logic Catch-up

If the PC clock is adjusted forward (for example to set the time correctly, or for Daylight Savings),
there could be the possibility of events being missed. The Schedule Catch-up process ensures that
any Schedules or Logic which should have been executed during this time will be executed.

7.8 Handling Sets of Loads

Sometimes it is necessary to handle a set of Loads to do things like :
Finding whether any lights are on
Setting some loads to a particular level

These functions can often be handled through the use of C-Bus Scene Functions. To handle a set of
loads, a Scene is created containing all of the Group Addresses to be used. The Scene is then used
to contain the set of Group Addresses and to control or monitor them together.

Examples

To set the level of a set of Loads (in a Scene), use the SetSceneLevel Procedure.

To determine whether all/any of the Group Addresses in a Scene are on/off, use the
GetSceneMaxLevel or GetSceneMinLevel functions.

To record the level of a series of loads, use the StoreScene Procedure and then you can later use
the SetScene Procedure to restore the levels to what they were.

7.9 Controlling Modules from Components or Schedules

There are several mechanisms for controlling a Module from a PICED Component or Schedule. This
section describes the alternative methods for executing a series of actions (in a Module) when it is
"triggered" by a Schedule or by a user clicking on a Component.

Using Group Addresses

A Component or Schedule can set a C-Bus Group Address to a particular level which can then be
used within a Module to initiate some actions. The problem with this approach is that C-Bus
commands get sent out onto C-Bus, which is not always appropriate. To make this work :

The Schedule or Component sets a C-Bus Group to a particular level (usually 100%)
The Module has an If Statement to check whether the Group is at the correct level
The Module resets the Group level when it is complete

See also Handling Triggers

Using System I/O Variables

Almost the same thing can be done using System I/O Variables (with Components, not with
Schedules). This has the advantage that no messages are sent onto C-Bus. To make this work :

The Component sets a System I/O variable to a particular level (usually a boolean variable set to
TRUE)
The Module has an If Statement to check whether the System I/O variable is at the correct level
The Module resets the System I/O variable value when it is complete

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 299

Using Special Functions

Special Functions can be used to enable and disable a Module. This approach is often the best
where a series of actions have to be performed by a Schedule or when a Component is clicked. To
make this work :

The Schedule or Component has the "Enable Module" Special Function
The Module is disabled in the Initialisation section
When the Schedule or Component enables the Module, it will be executed on the next scan
The Module then disables itself when it is complete

If a Module is controlled by a Special Function in a Schedule or from a Component, the module icon

will have a + symbol in it when in editing mode.

7.10 Running Modules Infrequently

If a module only needs to be run occasionally (say once per minute), the simplest method is to just
place a Delay at the end of the Module code. When the Module is complete, it will delay for the
specified duration before running again.

7.11 Simplifying Logic Conditions

There are various ways that boolean expressions can be simplified. A boolean expression with less
terms is quicker to evaluate, and is less likely to have errors. The rules for logic expressions are
shown below.

Distributive Rule

A and (B or C) = (A and B) or (A and C)

DeMorgan's Rules

not (A and B) = not A or not B

not (A or B) = not A and not B

Applying the Rules

By looking at a boolean expression, it is often possible to see the above patterns and use these to
simplify the expression.

Example

For example, consider the condition :

if (date = ScheduleDate) and (time = "7:00") or (date = ScheduleDate) and
(time = "19:00") then ...

The above expression can use the Distributive Rule to simplify it, since it is of the form :

(A and B) or (A and C)

In this case :

A is (date = ScheduleDate)

B is (time = "7:00")

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 300

C is (time = "19:00")

So by applying the rule, the above is equivalent to

A and (B or C)

which is :

if (date = ScheduleDate) and ((time = "7:00") or (time = "19:00")) then ...

7.12 Efficient Code

There are many things that can be done to make your Logic code more efficient, and hence to run
faster.

Simplify Logic

Logic Expressions can be Simplified to make them evaluate more quickly. This can make the code
easier to read too.

Run Less Frequently

Modules can be Run Less Frequently where appropriate. If a module only needs to run every minute
or so, then do so.

Nesting Conditions

Where there is a complex condition, it is more efficient to nest the condition if possible. For
example, if you had a complex Schedule like :

if (time = StartTime) and (Day >= 1) and (Day <= 7) and (Month >= "June") and
(Month <= "August") and (GetLightingLevel("Porch") > 50%) then ...

Each scan, all of the 6 conditions that make up the expression have to be evaluated. If the condition
was re-written as :

if (time = StartTime) then
 if (Day >= 1) and (Day <= 7) and (Month >= "June") and (Month <= "August") and
(GetLightingLevel("Porch") > 50%) then ...

Then only the first condition is evaluated each scan, and when the condition is true (only once per
day), then the rest will be evaluated. This reduces the amount of processing time to 1/6. Ideally, the
first condition should be the one that occurs the least often. If it had been written as :

if (GetLightingLevel("Porch") > 50%) then
 if (time = StartTime) and (Day >= 1) and (Day <= 7) and (Month >= "June") and
(Month <= "August") then ...

then the whole thing would be evaluated every scan while the "porch" light is on.

Using Variables

If you have a calculation that is used many times throughout you code, it can be more efficient to
assign it to a variable, then use the variable.

For example, if you have logic that depends on whether it is currently work hours, then you may
have code like :

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 301

if (DayOfWeek >= "Monday") and (DayOfWeek <= "Friday") and not IsSpecialDayType
(Date, "Public Holiday") and (Time >= "9:00AM") and (Time <- "5:30PM") and
GetTriggerState("Scene 1") then ...

if (DayOfWeek >= "Monday") and (DayOfWeek <= "Friday") and not IsSpecialDayType
(Date, "Public Holiday") and (Time >= "9:00AM") and (Time <- "5:30PM") and
GetTriggerState("Scene 2") then ...

This can be made faster and easier to read by defining a boolean variable called WorkingHours and
writing :

WorkingHours := (DayOfWeek >= "Monday") and (DayOfWeek <= "Friday") and not
IsSpecialDayType(Date, "Public Holiday") and (Time >= "9:00AM") and (Time <-
"5:30PM");

if WorkingHours and GetTriggerState("Scene 1") then ...

if WorkingHours and GetTriggerState("Scene 2") then ...

Using Scenes

If you have code which is setting a series of Group Addresses, it is much more efficient to Set a
Scene. This has the advantages that :

It makes the code more compact
It makes the code more readable
It is much easier to edit a scene than to change lines of logic
It executes much faster

7.13 Fixing Errors

Most programs have errors in them. The most common problem is Compilation Errors.

The logic engine provides various means of finding and fixing errors.

There are various Debugging Methods which can be used to track down logical errors within your
program.

7.14 Tracking a Group Address

One-way tracking

To get one Group Address to track another, the simplest method is to use the TrackGroup
Procedure. For example, to get Group Address 2 to follow the value of Group Address 1 if the Track
variable is true :

if Track then

 TrackGroup("Local Network", "Lighting", 1, 2);

Alternatively, the GetCBusTargetLevel and GetCBusRampRate functions can be used. The code to
do the same as the above would be :

if Track then

 if GetCBusTargetLevel("Local Network", "Lighting", 2) <>
GetCBusTargetLevel("Local Network", "Lighting", 1) then

 SetLightingLevel(2, GetCBusTargetLevel("Local Network", "Lighting", 1),
GetCBusRampRate("Local Network", "Lighting", 1));

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 302

Two-way Tracking

To get two Group Addresses to track each other, the simplest method is to use the TrackGroup2
Procedure. For example, to get Group Address 1 and Group Address 2 to follow each other if the
Track variable is true :

if Track then

 TrackGroup2("Local Network", "Lighting", 1, "Local Network", "Lighting",
2);

Example

A common use for this requirement is where two rooms are joined by a removable partition. In this
case, when the partition is closed, you want the lights in the two halves of the room to be
independent. When you open the partition, you want the lights to operate together. If we had a
sensor on the partition controlling a group "partition" which is on when closed, then you could get
the lights in room 1 and those in room 2 to track each other as follows :

if GetLightingState("partition") = false then

 TrackGroup2("Local Network", "Lighting", "Room 1", "Local Network",
"Lighting", "Room 2");

If there were three rooms joined by two partitions, the code would be :

{ Rooms 1 and 2 joined, Room 3 separate }

if (GetLightingState("partition 1") = false) and (GetLightingState
("partition 2") = true) then

 TrackGroup2("Local Network", "Lighting", "Room 1", "Local Network",
"Lighting", "Room 2");

{ Rooms 2 and 3 joined, Room 1 separate }

if (GetLightingState("partition 1") = true) and (GetLightingState("partition
2") = false) then

 TrackGroup2("Local Network", "Lighting", "Room 2", "Local Network",
"Lighting", "Room 3");

{ Rooms 1, 2 and 3 joined }

if (GetLightingState("partition 1") = false) and (GetLightingState
("partition 2") = false) then

begin

 TrackGroup2("Local Network", "Lighting", "Room 1", "Local Network",
"Lighting", "Room 2");

 TrackGroup2("Local Network", "Lighting", "Room 1", "Local Network",
"Lighting", "Room 3");

end;

7.15 Logic Templates

Logic code can be saved as a Template. This enables code to be re-used on future projects. When
writing code which is designed to be re-used, there are several things to consider, as listed below.

Using Constants

Where possible, numbers should be represented with constants. This means that the value of the
constant can be changed in one place, and the rest of the code will work correctly. For example, if
you had some code which used some zones, your code might be :

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 303

{ constants section }
ZoneCount = 5;

{ var section }
ZoneState : array[1..ZoneCount] of integer;

{ module section }
for ZoneNo := 1 to ZoneCount do
 if ZoneState[ZoneNo] > 0 then
 ...

In the above code, you only need to change the value of ZoneCount in one place if you want to
change the number of zones. It also makes the code easier to understand.

Similarly, constants can be used for C-Bus Group Addresses. For example, if you have some
template code to control a bathroom exhaust fan, you could use a constant for the fan Group
Address instead of a Tag :

{ constants section }
BathroomFan = 22;

{ module section }
...
SetLightingState(BathroomFan, On);
...

When someone uses a template with the above code in it, they just need to change the value for the
BathroomFan and the code will work correctly.

Comments

When you work on code which was written by someone else, or even by yourself some time ago, it
can be quite difficult to work out what the code is doing. Frequent comments throughout the code
will make it easier to re-use code.

Name Space

If you have a series of logic templates which use the same variable, procedure or function names,
you will not be able to load them at the same time. This is because you will have multiple
declarations of the same variable, procedure or function. To avoid this, you should use names that
will be unique for the template you are designing. For example, if you are designing a template to
handle a bathroom fan timer, you may want to prefix all variables with some letters which relate to
the bathroom fan timer :

{ var section }
bft_LightOnTime : integer;
bft_FanDuration : integer;
bft_FanIsOn : boolean;

The chances are that these names will not be used in any other templates, and you will not get a
conflict between the names.

7.16 How Much Logic Is Possible

There is no definite answer to how much logic code is possible, as it depends on many factors
including :

The speed of your computer
The logic functions used

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 304

How the code has been written

You can use the Resource Window to see how much of the resources are being used.

There are several basic limits to the amount of code :
The amount of memory available
The amount of code storage space available
How long the code takes to run (in the PAC, if it takes too long to run, it will be terminated)
Software Limits for some features

See the Efficient Code topic for ideas on how to get more code into the logic engine.

Note that it is possible to run a lot more logic on your computer than in a Colour C-Touch or
particularly in a PAC.

PAC

Estimating Usage

You can get an idea of how much of a scan typical statements take in a PAC by looking at the table
below :

Statement Approximate
%

of a scan
taken

Comment

C-Bus Commands

SetLightingLevel("light", 100%, 4); 1.2%

SetCBusLevel("local", "lighting", "light",
100%, 4);

1.3% The SetLightingLevel is faster

SetScene("All On"); 1.0% per
scene item

Faster than sending individual
commands. Less code is needed too.

TrackGroup("Local", "Lighting", "Group 1",
"Group 2");

0.4% / 2.4% Larger value is if the tracking group
needs to be changed

Conditions

once / if 0.1% "if" is slightly faster than "once"

GetLightingLevel("light") = 100% 0.2%

GetCBusLevel("local", "lighting", "light") =
100%

0.3%

GetLightingState("light") = ON 0.2%

GetLightingState("light") 0.1% This is quicker than above because no
comparison (= ON) is used

GetSceneLevel('floor 1") = 0% 0.1% per
scene item

For 10 scene items in the scene. Much
faster than a series of GetCBusLevel
commands.

time = "7:00 PM" 0.2%

ConditionStaysTrue(condition, "0:01:00") 0.3% Not including the evaluation of the
condition

Variables

Flag := true; 0.1%

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 305

Counter := 0; 0.1%

Counter := Counter + 1; 0.2%

Other

Each additional module used 1%

begin / end 0%

Comments or blank lines 0%

By adding up the individual items that occur in the worst case scan, you can get an idea of whether
a particular amount of logic is likely to fit in a PAC. Consider the code :

once GetLightingLevel("Start") = 100% then
begin
 SetLightingLevel("Room 1", 100%);
 SetLightingLevel("Room 2", 100%);
 SetLightingLevel("Room 3", 100%);
 SetLightingLevel("Room 4", 100%);
end;

On the scan when "Start" goes to 100%, this will take approximately 9.4% of the PAC capacity
(including 1% for the module it is in). On the other scans, it will only take 1.4% of the PAC capacity.

When the logic is running, the Resource Window shows a rough estimate of how much of PAC
capacity the logic will use. You will need to leave the logic running and test that it doesn't exceed
75% (to allow some spare capacity). The Logic Engine Options form allows you to select whether
you want to receive warnings if the PAC usage becomes excessive. To be confident that the PAC
has the capacity to run your logic, you will need to test all aspects of the logic. This requires
exercising every function of the logic and ensuring that the PAC usage does not exceed 75%. To be
completely sure, you will need to transfer the project to the PAC and repeat the tests on the actual
site.

Measuring the Actual Usage

The actual usage in the PAC can be monitored by connecting to the PAC and selecting the
Transfer | Control Unit | Log PAC Messages option. This will log the PAC usage whenever it
exceeds 75%. It is necessary to test the worst-case conditions to be sure that the PAC will be OK
under all circumstances. See Controlling the PAC in the main help file.

Getting more code to run

If you have tasks which do not need to be executed often, you can place them in a module with a
delay at the end. This will ensure that the code is not executed on every scan.

Alternatively, if you have a series of tasks which are too much to execute all in one scan, you can
write some code like :

{ var section }
ScanCount : integer;

{ initialisation section }
ScanCount := 1;

{ Module }
case ScanCount of
 1 : begin
 { code for the first scan here }
 end;
 2 : begin

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 306

 { code for the second scan here }
 end;
 3 : begin
 { code for the third scan here }
 end;
 4 : begin
 { code for the fourth scan here }
 end;
end;
{ increment the scan counter }
ScanCount := ScanCount + 1;
if ScanCount = 5 then
 ScanCount := 1;

The above code can be generated automatically using the Structures | Alternate Code pop-up
menu item.

The disadvantage of using this technique is that each part of the code is run less often and hence
there will be an increased delay between a given event and logic reacting to it.

Setting lots of Scenes

Setting large scenes can use up a lot of the PAC resources. If there is a possibility of several
scenes being set in the same scan, then the PAC may even reset itself.

If you have code like :
once GetLightingState("Group 1") then
 SetScene("Scene 1");
once GetLightingState("Group 2") then
 SetScene("Scene 2");
once GetLightingState("Group 3") then
 SetScene("Scene 3");

you could conceivably have 3 scenes executed in the same scan, if Group 1, 2 and 3 went on at the
same time.

If you changed it to :
once GetLightingState("Group 1") then
begin
 SetScene("Scene 1");
 ExitModule;
end;
once GetLightingState("Group 2") then
begin
 SetScene("Scene 2");
 ExitModule;
end;
once GetLightingState("Group 3") then
begin
 SetScene("Scene 3");
 ExitModule;
end;

then you could never have more than one scene set on a particular scan. If Group 1, 2 and 3 went
true at the same time, on the next scan Scene 1 would get set and then it would exit the module.
One the following scan, Scene 2 would get set and on the third scan, Scene 3 would get set.

Short and Long Term Maximum Usage

The PAC and C-Touch do allow the code to use more than 100% of a scan occasionally, as long as
the longer term average (over several seconds) does not exceed 100%.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 307

The PAC will allow the logic to run for up to 333% of a scan occasionally and the C-Touch will allow
the code to run for up to 200% occasionally.

Most logic code has occasions when it needs to run considerably more logic than normal. An
example of this is when a large Scene is being set. In this case, the logic may only require 20% for
most of the time, but may need over 100% of a scan when the Scene gets set.

C-Touch Mark 2

The C-Touch Mark 2 unit can run around 5 times as much code as the PAC.

7.17 Function indices start from 0, not 1

The following can use a Tag or an Integer as their argument (parameter) :
EnableModule and DisableModule procedures
ModuleEnabled Function
ShowingPage Function
ShowPage Procedure
SetSceneLevel, SetSceneOffset and SetScene procedure
System IO Functions
ExecuteSpecialFunction Procedure
IsSpecialDayType Function

In all cases, the parameter index starts from 0, not from 1. For example, if you have 3 scenes, called
"Scene 1", "Scene 2" and "Scene 3". If you wanted to set "Scene 2", you could use :

SetScene("Scene 2");

or
SetScene(1); // note it is not 2

It is recommended that you always use tags, rather than numbers. The reasons include :
You are more likely to get the number wrong than the tag
If the order of the items changes, the number will be wrong, but the tag will still be right

7.18 Displaying logic data

There are two ways of displaying logic engine data (for example, the content of a String variable):
1. Using DrawText is very flexible, but requires code to be written.
2. A Level / Value indicator can be used to show the text for a string User System IO variable. This
requires no coding and you can drag it to wherever you want and set the font, size etc. You place it
over the top of a button to make it look like the text is part of the button if required. You can use the
"word wrap" option if the text may be wider than the button.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 308

8 Appendix

8.1 Hexadecimal Numbers

A Hexadecimal number is a number represented in "base 16". Everyday numbers are represented in
decimal, which is base 10. In the decimal system numbers are expressed with 10 symbols; the
familiar digits 0-9. The hexadecimal system uses 16 symbols, the ten digits plus five letters (A to F)
to stand for additional "digits".

In the decimal system, once the number 9 (the last digit) is reached, a symbol has to be placed in
the next column (the "tens" column) to create a number with two digits. In the hexadecimal system,
in exactly the same way, once the number "F" (the last digit) is reached a symbol must be placed in
the next column (the "sixteens" column).

Hexadecimal Constants are expressed with a $ sign at the front.

A comparison between the two is shown below (decimal = hexadecimal) :

Decimal Hexadecimal (2 digits)

0 $00

1 $01

: :

9 $09

10 $0A

11 $0B

12 $0C

13 $0D

14 $0E

15 $0F

16 $10

17 $11

18 $12

: :

254 $FE

255 $FF

8.2 Binary Numbers

Binary numbers are numbers represented as base 2. The symbols used in a binary number are 0
and 1. Each bit (binary digit) of a binary number represents a power of 2. For example :

Decimal Binary (8 bits)

0 00000000

1 00000001

2 00000010

3 00000011

4 00000100

5 00000101

: :

254 11111110

255 11111111

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 309

8.3 Character and String Formats

There are many possible ways of representing characters and strings, including:
ASCII
Unicode
UTF-8
UTF-16

Prior to V4.7 of the PICED software, only ASCII characters could be used in logic. From V4.7
onwards, all characters are Unicode (UTF-16), and can also be converted to UTF-8 for use with:

Reading and writing data from files
Reading and writing data from serial ports
Reading and writing data from sockets

Logic in C-Touch, PAC and Wiser only support ASCII.

 Note that Unicode characters can not be used in C-Bus Tags.

8.3.1 ASCII

ASCII stands for American Standard Code for Information Interchange. Computers can only
understand numbers, so an ASCII code is the numerical representation of a character such as 'a' or
'@' or an action of some sort.

ASCII characters are often expressed as hexadecimal values. To determine the ASCII character for a
hexadecimal value of 0A (for example), convert the value to decimal (10) and then look it up in the
tables below (line feed).

Non-printing characters

ASCII was developed a long time ago and now the non-printing characters are rarely used for their
original purpose.

Value Symbol Meaning
0 NUL
1 SOH start of header
2 STX start of text
3 ETX end of text
4 EOT end of transmission
5 ENQ enquiry
6 ACK acknowledge
7 BEL bell
8 BS backspace
9 HT horizontal tab

10 LF line feed
11 VT vertical tab
12 FF form feed
13 CR carriage return
14 SO shift out
15 SI shift in
16 DLE data link escape
17 DC1 no assignment, but usually XON
18 DC2
19 DC3 no assignment, but usually XOFF
20 DC4
21 NAK negative acknowledge

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 310

22 SYN synchronous idle
23 ETB end of transmission block
24 CAN cancel
25 EM end of medium
26 SUB substitute
27 ESC escape
28 FS file separator
29 GS group separator
30 RS record separator
31 US unit separator

Printable Characters

Value Symbol Value Symbol Value Symbol

32 space 64 @ 96 `

33 ! 65 A 97 a

34 " 66 B 98 b

35 # 67 C 99 c

36 $ 68 D 100 d

37 % 69 E 101 e

38 & 70 F 102 f

39 ' 71 G 103 g

40 (72 H 104 h

41) 73 I 105 i

42 * 74 J 106 j

43 + 75 K 107 k

44 , 76 L 108 l

45 - 77 M 109 m

46 . 78 N 110 n

47 / 79 O 111 o

48 0 80 P 112 p

49 1 81 Q 113 q

50 2 82 R 114 r

51 3 83 S 115 s

52 4 84 T 116 t

53 5 85 U 117 u

54 6 86 V 118 v

55 7 87 W 119 w

56 8 88 X 120 x

57 9 89 Y 121 y

58 : 90 Z 122 z

59 ; 91 [123 {

60 < 92 \ 124 |

61 = 93] 125 }

62 > 94 ^ 126 ~

63 ? 95 _ 127 delete

8.3.2 Unicode

Unicode is a computing industry standard allowing computers to use text expressed in most of the
world's writing systems.

Unicode can be represented by different character encodings. The most commonly used encodings

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 311

are:
UTF-8 : this uses 1 byte for all ASCII characters (which have the same code values as in the
standard ASCII), and up to 4 bytes for other characters
UTF-16 : this uses 2 or 4 bytes to encode characters. The Logic Engine uses UTF-16.

8.3.3 UTF-8

UTF-8 (8-bit UCS/Unicode Transformation Format) is a variable-length character encoding for
Unicode. It is able to represent any character in the Unicode standard, but is backwards compatible
with ASCII.

The logic engine provides two functions for converting to and from UTF-8 encoded strings:
StringToUTF8 Procedure
UTF8ToString Procedure

See UTF-8 Example

8.3.4 UTF-16

UTF-16 (16-bit UCS/Unicode Transformation Format) is a variable-length character encoding for
Unicode. The encoding form maps each character to a sequence of 16-bit words.

The logic engine stores all characters as UTF-16. This allows non-ASCII (English) characters to be
used anywhere in the logic engine.

8.3.5 UTF-8 Example

We have a string variable called s, and it has been assigned the following text:

s := 'cost = €12';

The Euro symbol (€) is not an ASCII character. It is stored as a Unicode character and has a value
of 8364 ($20AC Hexadecimal).

Only ASCII data can be written to a file. If this string was to be saved to a file, the non-ASCII
character would be corrupted. The UTF-8 format consists of a series of bytes, which can be written
to a file, so the string needs to be converted to UTF-8 first, using the StringToUTF8 Procedure:

s := 'cost = €12';
StringToUTF8(s);
AssignFile(file1, 'test.txt');
ReWrite(file1);
WriteLn(file1, s);
CloseFile(file1);

When the Euro character is encoded in UTF-8, it is stored as three characters with values of $E2,
$82 and $AC. If you look at the file text.txt you will see the Euro character if the program recognises
it as being UTF-8. If not, you will see the characters â ‚ ¬

When reading data from a UTF-8 encoded file, the reverse process is used:

AssignFile(file1, 'test.txt');
Reset(file1);
ReadLn(file1, s);
CloseFile(file1);
UTF8ToString(s);

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 312

A similar process will be needed to reading/writing to serial ports and sockets.

8.4 Ladder Logic

A common method of describing logic is to use Ladder Logic. This section briefly describes the
conversion between a Ladder diagram and the equivalent logic statements.

Switches connected in series are equivalent to the logic AND operation. The Ladder Diagram below :

is equivalent to :

A and B and C

Switches connected in parallel are equivalent to the logic OR operation. The Ladder Diagram below :

is equivalent to :

A or B or C

Examples

The Ladder Diagram below :

is equivalent to :

(A or B) and C

Note that the OR condition is in brackets because the AND has a higher operator precedence than
the OR.

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 313

The Ladder Diagram below :

is equivalent to :

A or B and C

8.5 Flow Charts

A Flow Chart can be used to represent a sequence of actions and decisions. For more details on the
use of flow charts, refer to a book on software programming.

The simple decision box is equivalent to the logic If Statement. The flowchart below :

is equivalent to :

if A then B;

or

once A then B;

depending on whether the statement is to be edge triggered or not.

The flowchart below :

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 314

is equivalent to :

if A then B else C;

8.6 Functional Blocks

Many functional blocks have an equivalent in Logic. For example, the function block below :

is equivalent to :

D := (A or B) and C;

Note that the OR condition is in brackets because the AND has a higher operator precedence than
the OR.

8.7 Pascal

For more details on the Pascal language see :
Brian Brown / Peter Henry
Coronado Enterprises
Roby
List of Tutorials

The Logic Engine also has a series of example projects which can be used as a source of
information.

The Logic Engine language differs from standard Pascal in the following ways :
The Logic Engine supports variable length strings
Many non-standard built-in functions have been added

http://www.geocities.com/SiliconValley/Horizon/5444/pstart.htm
http://www.coronadoenterprises.com/tutorials/pascal/
http://www.geocities.com/SiliconValley/Park/3230/index.html
http://www.webwareindex.com/tutorials/Pascal.html

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 315

Modules have been incorporated
Tags are supported
Once Statement
Delay Procedure
WaitUntil Procedure
Alternative Integer constants

8.7.1 Syntax Diagrams

A few rules for Syntax Diagrams
Non-terminal symbols can be "expanded" and represent another syntax diagram with the name in
the box.
Terminal symbols can not be expanded and the content of the circle / oval is the text which has to
be typed.
The diagrams are traversed in the direction of the arrows.
Where there is a choice of directions to follow, this means that the various paths are alternatives.

To help to clarify the syntax diagrams, there is some colour coding used :
Black : standard Pascal
Grey : standard, but uncommon Pascal (or not implemented)
Red : extensions for the Logic Engine
Blue : comments

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 316

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 317

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 318

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 319

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 320

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 321

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 322

8.8 Tutorial Answers

In the code answers below, the sections that the code segments belong in are shown in comments.
For example, a snippet of code starting with { var } belongs in the Global Variables.

There are many ways of solving some of these questions. The only way to be sure that your solution
works is to write the code in the Logic Engine and test it. You may want to reduce the duration of
any delays for testing purposes.

Tutorial 1

Question 1

name is valid
case is not a valid identifier - it is a reserved word
light level is not a valid identifier - it has a space in it

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 323

light_level is valid
group# is not a valid identifier - it has an illegal character (#) in it

Question 2

WriteLn('Level = ', Level);

Question 3

1200.0
18
255

Question 4

Real
Integer
Boolean
Char
String

Question 5

total : integer;
message : string;
cost : real;
error : boolean;

Question 6

There is a space in the name of number2 :
number1, number 2; integer;

There is a semicolon instead of a colon before the word integer :
number1, number 2; integer;

The = should be a :=
number1 = 12;

number2 is an integer, and can not be assigned a real value :
number2 := 2.3

There is a missing semicolon at the end of the statement :
number2 := 2.3

The quote at the end of the string is missing :
WriteLn('number2 =, number2);

Question 7

WriteLn('Level = ', Level * 100 / 255:6:1, 'W');

Question 8

Count := Count + 1;

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 324

Tutorial 2

Question 1

0.125
1.5
8
-2
7
2
0.5
-1

Question 2

Z := X + (Y * Y);
Z := (X + Y) * (X + Y);
Z := (A + B + E) / (D + E);
Z := A + (B / C);
Z := (A + B) / C;
Z := A + (B / (D - C));

Question 3

Y := 2X + A; should be 2 * X + A {missing operator}
4 := X - Y; 4 is a constant
A := 1 / (X + (Y - 2); missing bracket
-J := K + 1; rewrite as j := - (k + 1);
S := T / * 3; one too many operators
Z + 1 := A; rewrite as z:= A - 1;

Question 4

1 false
2 false
3 true
4 true
5 false
6 true
7 false
8 true
9 true

Tutorial 3

1. int1 = 10
2. bool1 = true
3. int1 = 5 to 15
4. int1 = 4
5. int1 = 3
6. char1 = 'C'
7. int1 = 5

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 325

Tutorial 4

Question 1

once (time = Sunset + "0:30:00") and (DayOfWeek <> "Sun") and (DayOfWeek <>
"Sat") then
 SetLightingState("Porch Light", ON);

OR

once (time = Sunset + "0:30:00") and (DayOfWeek in ["Mon", "Tue", "Wed", "Thu",
"Fri"]) then
 SetLightingState("Porch Light", ON);

Question 2

once (time = "7:00PM") and (DayOfWeek = "Fri") and (Day <= 7) then
 SetScene("Party");

Question 3

The following will not work as required :
OffTime := Time + "2:00:00";

If the time is after 10PM, then the OffTime variable will be assigned a value of greater than midnight,
which is meaningless. The following will ensure that the value is always between 0 and 86399
(11:59:59PM) :

OffTime := Time + "2:00:00";
if OffTime >= 86400 then
 OffTime := 0;

OR
OffTime := (Time + "2:00:00") mod 86400;

Question 4

To increment Counter every 20 seconds, any of the following will work :
if (Second = 0) or (Second = 20) or (Second = 40) then
 Counter := Counter + 1;

OR
if Second in [0, 20, 40] then
 Counter := Counter + 1;

OR
if Second mod 20 = 0 then
 Counter := Counter + 1;

OR
if Time mod 20 = 0 then
 Counter := Counter + 1;

To increment Counter every 45 seconds, only the following will work :
if Time mod 45 = 0 then
 Counter := Counter + 1;

Question 5

once GetTriggerLevel("Nudge Up") = 100% then
 NudgeSceneLevel("Living Area", 10%);

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 326

Tutorial 5

Question 1

The differences between a System IO Variable and a regular Logic Variable are :
the user can not directly monitor or control a regular variable.
with System IO variables, the "get" and "set" functions must be used to use them
the values of System IO variables are not initialised when the Logic Engine runs
the values of System IO variables are saved when the Project is saved

Question 2

1. An integer System IO variable value can only be read using the GetIntSystemIO function. The
correct code should be :

if GetIntSystemIO("Counter") = 10 then ...

2. An integer System IO variable can only have its value set using the SetIntSystemIO function. The
correct code should be :

SetIntSystemIO("Counter", 0);

Question 3

once GetLightingState("Bathroom Light") then
 TimerStart(1);

if TimerRunning(1) and (TimerTime(1) = "0:30:00") then
begin
 SetLightingState("Bathroom Light", OFF);
 TimerStop(1);
end;

Question 4

Write a statement to set the "Switch On Time" System IO variable to the time that the "Spa Pump"
Group Address was switched on.

once GetLightingState("Spa Pump") then
 SetIntSystemIO("Switch On Time", Time);

Tutorial 6

Question 1

Copy(String1, String2, 1, 3);

Question 2

String1 := 'Date =';
DateToString(Date, String2);
Append(String1, String2);

Question 3

Copy(String2, String1, 6, 3);
x := StringToInt(String2);

Question 4

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 327

if Time = "5:30PM" then
 Execute('HomeTime.wav', '');

Question 5

Once GetBoolSystemIO("Set Now") then
 SetLightingLevel("Lounge Light", PercentToLevel(GetIntSystemIO("Desired
Level")));

Note that the "Desired Level" has to be converted from a percent to a level before it can be used.

Question 6

Write a statement to set the "All On" Scene at 8:30AM on weekdays (Monday to Friday) which are
not a public holiday.

once (time = "8:30AM") and (DayOfWeek <> "Sun") and (DayOfWeek <> "Sat") and
not IsSpecialDayType(date, "Public Holiday") then
 SetScene("All On");

Tutorial 7

Question 1

One possible solution is :

{ var }
 i, total : integer;
...
{ Module 1 }
total := 0;
for i := 1 to 10 do
begin
 total := total + i;
 WriteLn('Triangle Number ', i:3, ' is ', total);
end;

Question 2

if A > B then
 WriteLn(A)
else
 WriteLn(B);

Question 3

B
E
H
I
J

Question 4

A
D

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 328

F
H

Question 5

if letter < 'A' then
 writeln('Too low')
else
 writeln('Too high');

Question 6

2
4
8
16
32
64
128

Question 7

case i of
 0 : WriteLn('A');
 1 : WriteLn('B');
 2 : WriteLn('C');
 3 : WriteLn('D');
end;

Question 8

{ initialisation }
count := 0;
{ … }
{ main program }
once GetLightingState("Bathroom Light") then
 count := count + 1;

Note that a "once" statement must be used. An "if" statement will count the number of scans
executed while the light is on.

Question 9

The following are two simple solutions.

once GetLightingState("Lounge Light") = ON then
 SetLightingState("Lounge Lamp", ON);

once GetLightingState("Lounge Light") = OFF then
 SetLightingState("Lounge Lamp", OFF);

OR

once GetLightingState("Lounge Light") then
 SetLightingState("Lounge Lamp", ON);

once not GetLightingState("Lounge Light") then
 SetLightingState("Lounge Lamp", OFF);

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 329

The following code is nearly the same, but will not allow the lamp to be switched on and off
independently, which is probably undesirable :

once GetLightingState("Lounge Light") <> GetLightingState("Lounge Lamp") then
 SetLightingState("Lounge Lamp", GetLightingState("Lounge Light"));

The following code is NOT acceptable, as it will result in multiple commands being sent to C-Bus :

if GetLightingState("Lounge Light") = ON then
 SetLightingState("Lounge Lamp", ON);

if GetLightingState("Lounge Light") = OFF then
 SetLightingState("Lounge Lamp", OFF);

OR

SetLightingState("Lounge Lamp", GetLightingState("Lounge Light"));

Question 10

once GetLightingState("Bedroom Switch") then
 if time > "9:00PM" then
 SetLightingLevel("Bedroom Light", 70%, "8s")
 else
 SetLightingState("Bedroom Light", ON);

once not GetLightingState("Bedroom Switch") then
 SetLightingLevel("Bedroom Light", OFF);

Question 11

once GetLightingState("Room 1 Switch") then
 if GetLightingState("Divider Closed") then
 SetScene("Room 1 On")
 else
 SetScene("All On");

once not GetLightingState("Room 1 Switch") then
 if GetLightingState("Divider Closed") then
 SetScene("Room 1 Off")
 else
 SetScene("All Off");

Question 12

once GetLightingState("Outside PIR") = ON then
 if (Time > "9:00:00PM") and (Time < "11:59:59PM") then
 begin
 StoreScene("Restore Scene");
 SetLightingState("Room 1", ON);
 delay(2);
 SetLightingState("Room 2", ON);
 delay(2);
 SetLightingState("Room 3", ON);
 end;

once GetLightingState("Outside PIR") = OFF then
 if (Time > "9:00:00PM") and (Time < "11:59:59PM") then

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 330

 SetScene("Restore Scene");

Question 13

Here is a simple solution using a module called "Lived In", which controls the lived-in look.

{ initialisation }
CurrentRoom := 0;
NextRoom := 0;
DisableModule("Lived In");
{ … }
{ module "Lived In" }
{ pick the next room to switch on }
repeat
 NextRoom := random(4) + 1;
until NextRoom <> CurrentRoom;
{ switch off the light in the current room }
case CurrentRoom of
 0 : ;
 1 : SetLightingState("Room 1", OFF);
 2 : SetLightingState("Room 2", OFF);
 3 : SetLightingState("Room 3", OFF);
 4 : SetLightingState("Room 4", OFF);
end;
{ switch on the light in the next room }
case NextRoom of
 0 : ;
 1 : SetLightingState("Room 1", ON);
 2 : SetLightingState("Room 2", ON);
 3 : SetLightingState("Room 3", ON);
 4 : SetLightingState("Room 4", ON);
end;
CurrentRoom := NextRoom;
delay("0:05:00" + random("0:15:00"));
{ … }
{ another module }
once GetLightingLevel("away mode") and (time >= sunset + "1:00:00") then
 EnableModule("Lived In");
once not GetLightingLevel("away mode") or (time = "11:00PM") then
 DisableModule("Lived In");

Question 14

When the "Night" Scene is set, there is a delay for three hours. During this time, the Module will not
be run again. By the time the Module is run again, the time has changed (to 11PM).

Question 15

Line 1 :
It should be a once statement
There should be brackets around the individual parts of the condition
9PM in not a valid tag, it should be "9PM"

Line 2 :
Kitchen Light should be within quotes (assuming it is supposed to be a tag)
There is no semi-colon at the end of the line

The correct code is :
once (day = 14) and (month = 7) and (time = "9PM") then

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 331

 SetLightingLevel("Kitchen Light", 100%);

Tutorial 8

Question 1

procedure Multiply(number1, number2 : integer);
var
 Result : integer;
begin
 Result := number1 * number2;
 writeln(Result)
end;

Question 2

2 0
1 2

Question 3

function Multiply2(number1, number2 : integer) : integer;
var
 Result : integer;
begin
 Result := number1 * number2;
 Multiply2 := Result
end;

Question 4

3
2
3
3

Question 5

Errors :
The begin and end statements are not needed around individual statements
The assignment operator is := not =
The WriteLn needs a comma separating the arguments

The correct code is :
 x := x + 1;
 WriteLn('x = ', x);

Tutorial 9

Question 1

Using a Delay procedure :

once time = "7:00PM" then
begin
 SetLightingState("Porch Light", on);

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 332

 Delay("4:00:00");
 SetLightingState("Porch Light", off);
end;

Using a WaitUntil procedure :

once time = "7:00PM" then
begin
 SetLightingState("Porch Light", on);
 WaitUntil(time = "11:00PM");
 SetLightingState("Porch Light", off);
end;

Using neither :

once time = "7:00PM" then
 SetLightingState("Porch Light", on);
once time = "11:00PM" then
 SetLightingState("Porch Light", off);

Question 2

If Counter >= 100 then
begin
 DisableModule("Module 2");
 WaitUntil(Counter < 50);
 EnableModule("Module 2");
end;

Tutorial 10

Question 1

{ var }
reply : string;
count : integer;
{ … }
{ initialisation }
OpenSerial(1, 4, 9600, 8, 1, 0, 0);
{ … }
{ main program }
count := 0;
WriteSerial(1, 'AT'#13#10);
repeat
 count := count + 1;
 Delay(1);
 ReadSerial(1, reply, #13#10);
until (reply = 'OK') or (count = 10);
if Reply = 'OK' then
 LogMessage('Modem Connected')
else
 LogMessage('Modem Connection Failed');

Tutorial 11

© 2015 Schneider Electric (Australia)

PICED Logic Programmer's Guide

Page 333

Question 1

Numbers[1] is 7
Numbers[2] is 13
Numbers[3] is 12
Numbers[4] is 4
Numbers[5] is 3

Tutorial 12

Question 1

AssignFile(file1, 'data.txt');
Reset(file1);
i := 0;
while not eof(file1) do
begin
 i := i + 1;
 ReadLn(file1, Data[i]);
end;
CloseFile(file1);

PICED Logic Programmer's Guide

Page 334© 2015 Schneider Electric (Australia)

Index

' 40

-
- 45, 50, 259

"
" 62

#
40

$
$ 39, 308

%
% 39

(
(* 37

*
* 45, 50, 259

*) 37

.
. (record fields) 255

... 5

/
/ 45, 50

// 37

:
:= 42

^
 ̂ 256

{
{ 37

}
} 37

+
+ 45, 50, 259

<
< 46, 50

<= 46, 50

<> 46, 50

=
= 46, 50

>
> 46, 50

>= 46, 50

A
Abs 54

Access Control 107

Air Conditioning 107, 117

Alarm 107, 149

Alignment
horizontal 196

vertical 195

and 9, 47, 49, 50

Append 134

AppendFile 264

PICED Logic Programmer's Guide

Page 335© 2015 Schneider Electric (Australia)

Appendix 308

Applications 62

Archive 261

ArcTan 58

Arithmetic Operators 45

Arrays 254

ASCII 309, 311

AssignFile 262

Assignment 42

Audio
In-built System IO 107

Auto restart 31

auto-completion 25

B
Backlight 149

Basic 8

Beep 144

Binary 308

bits 49

Blocks 172

Boolean 40
Operators 47, 299

order 50

precedence 50

Rules 299

Simplifying Expressions 299

C
case 161

when to use 162

Catch-up 298

C-Bus
Conditions 9

Functions 71

Get Enable Level 76

Get Enable State 77

Get Level 74

Get Lighting Level 77

Get Lighting State 77

Get Ramp Rate 74

Get State 75

Get Target Level 75

Get Trigger Level 79

Labels 120

Level 72

Network state 107

Pulse 82

Scene 73, 83, 86, 87, 88

Set Enable Level 84

Set Enable State 85

Set Level 83

Set Lighting Level 85

Set Lighting State 86

Set State 84

Set Trigger Level 88

State 72

statements 11

Tags 73, 90

Timer 76

Track Group 89

Voltage 80, 81

C-Bus Unit 152

C-Bus Unit Functions 150

Char 40, 59, 60

Char Operators 46

Characters 309, 310, 311

Chr 59

ChrW 60

ClearScreen 184

Click
Example 197

Get 196

Get X Coordinate 196

Get Y Coordinate 197

ClientSocketConnected 210

ClientSocketError 211

CloseClientSocket 211

CloseFile 265

CloseSerial 198

CloseServerSocket 212

CloseUDPSocket Procedure 218

Code
Efficient 300

code window 25

Colour 184

Comments 37
use of 302

Compile
Errors 277

Warnings 277

Compiling 30

Components
Properties 234, 237, 238, 239, 240, 241, 242,
243

Compound Statement 11

PICED Logic Programmer's Guide

Page 336© 2015 Schneider Electric (Australia)

Conditional Logic 8

Conditions 8, 9

ConditionStaysTrue 159

Const 23, 34

Constants 38
in templates 302

Controlling Modules 298

Conventions
Typographic 5

Conversion
Char to Integer 60

Integer to Char 59, 60

Coordinates 183

Copy 134

Cos 58

Counters 292

CrossFadeScene 73

C-Touch 151

C-Touch Functions 150

CurrentPage 144

D
Data

Displaying 307

Date 63
Conditions 9

DateToString 135

day of month 64

day of week 64

day of year 65

decode 65

encode 65

In-built System IO 107

month 66

today 63

year 66

Date Functions 63

Date Types 250

DateToString 135

Day 64

Daylight Savings 107

DayOfWeek 64

DayOfYear 65

Debug Data 31

Debugging 273, 274
condition testing 274

error types 273

intermittent errors 275

support features 273

tracking program 275

Debugging Serial 207

DecodeDate 65

DecodeTime 67

Delay 11, 178
ConditionStaysTrue 159

DeleteEMail Procedure 231

DisableModule 180

Display 42

Displaying Data 307

div 45, 50

DLT 107, 115, 117
Labels 120

DNS 223
Errors 224

Example 225

IP Address 224

Lookup 223

Result 224

DNSLookup Procedure 223

do 164

Domain Names 223

DrawImage 185

DrawText 185, 307

DrawTextBlock 186

DTR 201

DurationToString 141

E
Efficient Code 300

Ellipse 187

Ellipsis 5

else 154, 161

E-Mail 227
Body 228, 230

Count 228

Delete 231

Send 231

Sender Address 229

Sender Name 229

Subject 230

Enable
Get State 77

Set Level 84

Set State 85

EnableModule 179

EncodeDate 65

PICED Logic Programmer's Guide

Page 337© 2015 Schneider Electric (Australia)

EncodeTime 67

Energy 121

Enumerated Types 250

EOF 265

EOLN 265

Error Messages 277

Error Reporting 107

Error Types 273

Errors 31
Compilation 277

Debugging 273, 274

fixing 301

Run Time 287

types 273

Ethernet 209, 232

Even 55

Execute 144

ExecuteSpecialFunction 149

ExitModule 179

Exp 54

Exponentiation 57

F
False 40

FAQ 292

FileExists 266

Files 261, 311
AppendFile 264

AssignFile 262

CloseFile 265

End of File 265

End of Line 265

Example 266

FileExists 266

Reading 263

Reset 262

Rewrite 263

Writing 264

Flag 40

Floating Point Numbers 40

Flow Charts 313

Flow Control 153

Fonts 31

For 164

Format 136

Formatting 35

Forward Declarations 174

Frequently Asked Questions 292

Function 34

Functional Blocks 314

Functions 23, 171
Standard 53

G
GetAccessLevel 145

GetBoolIBSystemIO 113

GetBoolSystemIO 104

GetCBusApplicationAddress 93

GetCBusApplicationCount 92

GetCBusApplicationFromIndex 93

GetCBusApplicationTag 94

GetCBusGroupAddress 95

GetCBusGroupCount 94

GetCBusGroupFromIndex 95

GetCBusGroupTag 96

GetCBusLevel 74

GetCBusLevelAddress 97

GetCBusLevelCount 96

GetCBusLevelFromIndex 97

GetCBusLevelTag 98

GetCBusNetworkAddress 91

GetCBusNetworkCount 90

GetCBusNetworkFromIndex 91

GetCBusNetworkTag 92

GetCBusRampRate 74

GetCBusState 75

GetCBusTargetLevel 75

GetCBusTimer 76

GetClick 196

GetClickX 196

GetClickY 197

GetCompBooleanProp Function 237

GetCompIntegerProp Function 237

GetCompRealProp Function 238

GetCompStringProp Procedure 238

GetCompType Function 239

GetDNSLookupIPAddress Procedure 224

GetDNSLookupResult Function 224

GetEMailAddress Procedure 229

GetEMailBodyLine Procedure 230

GetEMailBodyLineCount Function 228

GetEMailCount Function 228

GetEMailSender Procedure 229

GetEMailSubject Procedure 230

GetEnableLevel 76

PICED Logic Programmer's Guide

Page 338© 2015 Schneider Electric (Australia)

GetEnableState 77

GetHTTPData Procedure 225

GetIntIBSystemIO 114

GetIntSystemIO 104

GetIPAddress Procedure 232

GetLightingLevel 77

GetLightingState 77

GetNetworkAdaptorCount Function 232

GetPageCompCount Function 239

GetPageIntegerProp Function 233

GetPingResult Function 223

GetProfile Function 244

GetRealIBSystemIO 114

GetRealSystemIO 104

GetSceneLevel 78, 83

GetSceneMaxLevel 79

GetSceneMinLevel 79

GetStringIBSystemIO 115

GetStringSystemIO 105

GetTransportControlData Procedure 246

GetTriggerLevel 79

GetUnitParameter 80

GetUnitParamStatus 81

GetUnitStatus 80

GetZigbeeGroupLightingLevel 270

Graphics 183
Brush Colour 190

Brush Style 190

Circle 187

Clear Screen 184

Click 196, 197

Colours 184

coordinates 183

Ellipse 187

Font Colour 191

Font Name 191

Font Size 192

Font Style 192

Image 185

Line 188

Move to 188

Pen Colour 193

Pen Style 194

Pen Width 194

positions 183

Rectangle 189

Round Rectangle 189

Text 185

Text Block 186

Text Height 195

Text Position 195

Text Width 196

Group
track 89

Group Address 72
Ramp Rate 74

Ramping 75

Target Level 75

Timer 76

track level 301

Group Addresses 62, 302

Group Labels 107

H
Halt 147

Handshaking lines 201, 202

HasChanged Function 160

Heap 257

Hexadecimal 39, 308
string 142

HexStringToInt 142

Holidays 132, 133

Hour 68

HTTP 225, 226, 227

HVAC 107

HVAC Application 117

I
Identifiers 35

if 8, 154
ConditionStaysTrue 159

when to use 157, 162

in 50, 259

In-Built System IO 107
Energy 121

HVAC 117

Measurement Application 119

Power 121

Schedules 127

Tariff 121

Index
parameter 307

Initialisation 5, 23, 177, 292, 293

Integer 39

Internet 209, 218, 222, 223, 225, 232

Introduction 4

PICED Logic Programmer's Guide

Page 339© 2015 Schneider Electric (Australia)

IntToHexString 142

IP Address 223, 224, 232

Irrigation 107, 149

IsCBusUnit 152

IsCTouch 151

IsMasterUnit 153

IsPAC 151

IsSpecialDayType 132

IsWiser 152

J
Join Room 301

K
Keyboard Shortcuts 30

L
Labels 107, 115, 117, 120

Ladder Logic 312

Language 5, 34
Labels 120

LED 150, 151

Length 136

Level 72
Target 75

Levels 62

LevelToPercent 145

Light Level 80, 81

Lighting
Get Level 77

Get State 77

Level to Percent 145

Percent to Level 148

Scene 73, 83, 86, 87, 88

Set Level 85

Set State 86

Track Group 89

LineTo 188

Ln 54

Loads
Sets 298

Log 31
natural 54

Log in 149

Log out 149

Logic
Catch-up 298

Editor 22

Flow Charts 313

Functional Blocks 314

How Much 303

In-built System IO 107

Ladder 312

quantity 303

re-use 302

Rules 299

Simplifying Expressions 299

speed 303

Templates 302

Using 22

when to use 292

Logic Engine 315
Language 5

operation 5

Restart 147

Stop 147

Logic Report 30

Logic Tree 23

LogMessage 146

LowerCase 136

M
Make on LAN 221

Mark 257

Master Unit 153

Mathematical Functions 53

Measurement Application 103
System IO 119

Media Transport Control 245

Memory 29, 31
Management 257

Security 297

Menu Items 22

Minute 68

mod 45, 50

Module
disabled 180

enabled 181

waiting 181

Module Wizard 26
Actions 28

Conditions 27

Details 27

PICED Logic Programmer's Guide

Page 340© 2015 Schneider Electric (Australia)

ModuleDisabled 180

ModuleEnabled 181

Modules 5, 13, 23, 176
controlling 298

delay 293, 299

disabled 293

enabling 298

execution 293

Groups 177

Tags 177

Wizard 26

ModuleWaiting 181

Monitors 107

Month 66

MoveTo 188

Music 245

N
Name space 302

Names 62

Network Adaptor 232

Networks 62

New 256, 257

Next 61

nil 256

not 47, 49, 50

NudgeSceneLevel 82

O
Odd 55

of 161, 259

Off 40

On 40

once 8, 156
when to use 157

OpenClientSocket 212

OpenSerial 199

OpenServerSocket 212

OpenUDPSocket Procedure 218

Operands 45

Operation 5

Operator Precedence 50

Operators 45

Options 31

or 9, 47, 49, 50

Ord 60

Ordinal
functions 59

types 59

OrdW 60

Other Functions 143

output window 26

P
PAC 151

PAC Functions 150

Page
current 144

Properties 233, 234

show 146

showing 147

which is showing 144, 147

Page Transition effect 149

Pages 107
Properties 233

Selecting 11

Parameter
index 307

Parameters
Strings 170

Value 170

Variable 170

Pascal 314, 315

Percent 39

PercentToLevel 148

Ping 222
Example 223

Result 223

Send 222

Pointers 256, 257

pop-up menu 25

Pos 137

Pos2 137

PostHTTPData Procedure 226

Power 57, 121

Power-up 298

Pred 61

Previous 61

Procedure 34

Procedures 23, 168

ProfileIsSet Function 244

Profiles 244, 245

Program 34
execute 144

PICED Logic Programmer's Guide

Page 341© 2015 Schneider Electric (Australia)

Programs 5
execution 293

Protocols 202

PulseCBusLevel 82

Q
Quick Start 8

R
Ramp Rate 74

Ramp Rates 62

Random 55
Times 295

Range Checking 31

Read 42, 263

ReadClientSocket 213

ReadHTTPData Procedure 225

ReadHTTPPostData Procedure 227

ReadLn 42, 263

ReadSerial 200

ReadServerSocket 214

ReadUDPSocket Procedure 219

Real 40

Records 255

Rectangle 189

Recursion 174

Relational Operators 46

Release 257

Repeat 45, 163

Report
Logic 30

Reset 262

Resource Usage 31

Resources 29

Restart 147

Restart Logic 31

Rewrite 263

right click 25

Room Join 89, 301

Round 56

RoundRect 189

RS232 197, 201, 202
Debugging 207

Example 202

RTS 202

Run Time Errors 287

Running Logic 31

RunTime function 68

S
Scan 5

Scene
Cross-Fade 73

Get Level 78, 83

Get Max Level 79

Get Min Level 79

Is it set? 78, 83

Levels 78, 83

Nudge Levels 82

Set 86

Set Level 86

Set Offset 87

Store 88

Scenes 62, 107, 298
statements 11

Schedules 107, 127

Scope 173

ScreenHeight 183

ScreenWidth 183

Second 69

Security 107, 297

SendEMail Procedure 231

SendPing Procedure 222

SendWOL Procedure 221

Serial
Close 198

COM Ports 207

Debugging 207

DTR 201

Embedded devices 207

Errors 207

Example 202

Open 199

Read 200

RTS 202

Security 297

Write 201

Serial Commands 197

ServerSocketActive 214

ServerSocketError 215

ServerSocketHasClient 215

SetBoolIBSystemIO 116

SetBoolSystemIO 105

SetBrushColor 190

PICED Logic Programmer's Guide

Page 342© 2015 Schneider Electric (Australia)

SetBrushStyle 190

SetCBusLevel 83

SetCBusState 84

SetCompBooleanProp Procedure 240

SetCompCBusProp Procedure 240

SetCompIntegerProp Procedure 241

SetCompRealProp Procedure 241

SetCompStringProp Procedure 242

SetEnableLevel 84

SetEnableState 85

SetFontColor 191

SetFontName 191

SetFontSize 192

SetFontStyle 192

SetIntIBSystemIO 116

SetIntSystemIO 106

SetLEDState 150

SetLength 138

SetLightingLevel 85

SetLightingState 86

SetPageIntegerProp Procedure 234

SetPenColor 193

SetPenStyle 194

SetPenWidth 194

SetProfile Procedure 245

SetRealIBSystemIO 117

SetRealSystemIO 106

Sets 258
Example 260

Operations 259

Sets of Loads 298

SetScene 86

SetSceneLevel 86

SetSceneOffset 87

SetSerialDTR 201

SetSerialRTS 202

SetStringIBSystemIO 117

SetStringSystemIO 107

SetTriggerLevel 88

shl 49, 50

Shortcuts
Keyboard 30

ShowingPage 147

ShowingSubPage Function 243

ShowPage 146

ShowSubPage Procedure 243

shr 49, 50

Sin 58

Sockets 209
Security 297

TCP/IP 209

UDP 218

Solar Power 121

Special Days 132, 133

Special Function 149

SpecialDayType 133

Sqr 56

Sqrt 56

Stack 257

Start time 68

Start-up 298

State 72

Statement Wizard 29

Statements 11
Compound 11

Stop 147

StoreScene 88

String
Append 134

Copy 134

Date to String 135

Duration to String 141

Format 136

Hexadecimal to Integer 142

Integer to Hexadecimal 142

Length 136

Lower Case 136

Pos 137

Pos2 137

Set Length 138

String to Integer 138, 139

String to Real 140

Time to String 140

Type 40

Upper Case 141

UTF-8 143

String Operators 46

Strings 40, 309, 311
Functions 134

Parameters 170

StringToInt 138

StringToIntDef 139

StringToReal 140

StringToUTF8 143

Structure 34, 35

Sub-Page Frame 243

Sub-Pages 243

PICED Logic Programmer's Guide

Page 343© 2015 Schneider Electric (Australia)

Sub-Programs 168

Sub-Ranges 253

Succ 61

Sunrise 69

Sunset 70

Syntax Diagrams 315

Syntax Highlighting 31

System
In-built System IO 107

System IO
Displaying Data 307

Editor 103

Energy 121

examples 130

Functions 101

GetBoolIBSystemIO 113

GetBoolSystemIO 104

GetIntIBSystemIO 114

GetIntSystemIO 104

GetRealIBSystemIO 114

GetRealSystemIO 104

GetStringIBSystemIO 115

GetStringSystemIO 105

In-Built 107, 117

Measurement Application 119

Power 121

Schedules 127

SetBoolIBSystemIO 116

SetBoolSystemIO 105

SetIntIBSystemIO 116

SetIntSystemIO 106

SetRealIBSystemIO 117

SetRealSystemIO 106

SetStringIBSystemIO 117

SetStringSystemIO 107

Tags 103, 113

Tariff 121

User 102

using 102

Variable Editor 103

T
Tags 62

C-Bus 73, 90

C-Bus Application 92, 93, 94

C-Bus Group 94, 95, 96

C-Bus Level 96, 97, 98

C-Bus Network 90, 91, 92

using constants in place of 302

Target Level 75

Tariff 121

TCP/IP 209
Client Close 211

Client Connected 210

Client Error 211

Client Open 212

Client Read 213

Client Write 216

Example 216

Server Active 214

Server Close 212

Server Error 215

Server Has Client 215

Server Open 212

Server Read 214

Server Write 216

Telephony 107

Temperature 80, 81

Templates
Logic 302

Text 40
Displaying 307

TextHeight 195

TextPos 195

TextWidth 196

Then 8, 154, 156

Time
Conditions 9

decode 67

DurationToString 141

encode 67

hour 68

In-built System IO 107

minute 68

now 70

Random 295

RunTime 68

second 69

sunrise 69

sunset 70

time since start 68

TimeToString 140

Time Functions 66

Timer 76

Timer Functions 99

TimerRunning 100

TimerSet 100

TimerStart 100

PICED Logic Programmer's Guide

Page 344© 2015 Schneider Electric (Australia)

TimerStop 101

TimerTime 101

TimeToString 140

Today 63

ToggleLEDState 151

Tool bar 23

Track Group Address 301

TrackGroup 89

TrackGroup2 89

Transport Control Application 245

TransportControlData Procedure 247

TransportControlDataCount Function 248

TransportControlDataMLG Function 248

TransportControlDataStart Function 248

TransportControlDataType Function 247

TransportControlDataValid Function 249

TransportControlFlag Function 249

Tree
Logic 23

Trigger
Get Level 79

Set Level 88

Triggers 297

Trigonometric Functions 57

True 40

Trunc 57

Tutorial
1 43

10 209

11 261

12 267

2 52

3 62

4 99

5 131

6 148

7 165

8 175

9 182

Answers 322

Type 23, 34

Types 39

U
UDP 218

Active 220

Close 218

Error 220

Example 222

Open 218

Read 219

WOL 221

Write 219

UDPSocketActive Function 220

UDPSocketError Function 220

Unicode 143, 309, 310, 311

Unit
C-Bus 152

C-Touch 151

Master 153

PAC 151

Parameter 80

Parameter Status 81

Status 80

Wiser 152

Until 163

UpperCase 141

User System IO 102

Using Logic 22

UTF-16 309, 311

UTF-8 143, 309, 311

UTF8ToString 143

V
Var 23, 34

Variables 38, 292

Voltage 80, 81

W
WaitUntil 182

Warnings
Compilation 277

Web 209

Web Data 225

While 164

Wiser Functions 150

Wiser Unit 152

Wizard
Module 26

Statement 29

WOL 221

Write 42, 264

WriteClientSocket 216

WriteLn 31, 42, 264

WriteSerial 201

PICED Logic Programmer's Guide

Page 345© 2015 Schneider Electric (Australia)

WriteServerSocket 216

WriteUDPSocket Procedure 219

X
xor 47, 49, 50

Y
Year 66

Z
Zones

HVAC 117

	Introduction
	Typographic Conventions
	Programs
	Operation

	Quick Start Guide
	Conditional Logic
	Conditions
	Statements

	Modules
	Creating a Logic Project
	Determine the Requirements
	Document the Requirements
	Create the Project Structure
	Create the Logic Modules
	Test the Logic
	Archive the Project

	For users with Programming Skills

	Using the Logic Engine
	Logic Editor
	Menu Items
	Tool Bar
	Logic Tree
	Code Window
	Output Window
	Module Wizard
	Wizard Details
	Wizard Conditions
	Wizard Actions

	Statement Wizard
	Resource Window
	Keyboard Shortcuts
	Logic Report

	Compiling
	Running Logic
	Logic Engine Options

	Logic Engine Language
	Program Structure
	Code Formatting
	Identifiers
	Comments
	Constants
	Variables
	Types
	Integer Type
	Real Type
	Boolean Type
	Char Type
	String Type

	Assignment
	Displaying Data
	Tutorial 1

	Operators
	Arithmetic Operators
	Relational Operators
	Char and String Operators
	Boolean Operators
	Bitwise Operators
	Operator Precedence
	Tutorial 2

	Standard Functions
	Mathematical Functions
	Abs Function
	Exp Function
	Ln Function
	Odd Function
	Random Function
	Round Function
	Sqr Function
	Sqrt Function
	Trunc Function
	Power Function

	Trigonometric Functions
	Sin Function
	Cos Function
	ArcTan Function

	Ordinal Functions
	Chr Function
	ChrW Function
	Ord Function
	OrdW Function
	Pred Function
	Succ Function

	Tutorial 3

	Tags
	Date Functions
	Date Function
	Day Function
	DayOfWeek Function
	DayOfYear Function
	DecodeDate Procedure
	EncodeDate Function
	Month Function
	Year Function

	Time Functions
	DecodeTime Procedure
	EncodeTime Function
	Hour Function
	Minute Function
	RunTime Function
	Second Function
	Sunrise Function
	Sunset Function
	Time Function

	C-Bus Functions
	C-Bus Level and State
	Tags
	CrossFadeScene Procedure
	GetCBusLevel Function
	GetCBusRampRate Function
	GetCBusState Function
	GetCBusTargetLevel Function
	GetCBusTimer Function
	GetEnableLevel Function
	GetEnableState Function
	GetLightingLevel Function
	GetLightingState Function
	GetSceneLevel Function
	GetSceneMaxLevel Function
	GetSceneMinLevel Function
	GetTriggerLevel Function
	GetUnitStatus Function
	GetUnitParameter Function
	GetUnitParamStatus Function
	NudgeSceneLevel Procedure
	PulseCBusLevel Procedure
	SceneIsSet Function
	SetCBusLevel Procedure
	SetCBusState Procedure
	SetEnableLevel Procedure
	SetEnableState Procedure
	SetLightingLevel Procedure
	SetLightingState Procedure
	SetScene Procedure
	SetSceneLevel Procedure
	SetSceneOffset Procedure
	SetTriggerLevel Procedure
	StoreScene Procedure
	TrackGroup Procedure
	TrackGroup2 Procedure
	C-Bus Tag Functions
	GetCBusNetworkCount Function
	GetCBusNetworkFromIndex Function
	GetCBusNetworkAddress Function
	GetCBusNetworkTag Procedure
	GetCBusApplicationCount Function
	GetCBusApplicationFromIndex Function
	GetCBusApplicationAddress Function
	GetCBusApplicationTag Procedure
	GetCBusGroupCount Function
	GetCBusGroupFromIndex Function
	GetCBusGroupAddress Function
	GetCBusGroupTag Procedure
	GetCBusLevelCount Function
	GetCBusLevelFromIndex Function
	GetCBusLevelAddress Function
	GetCBusLevelTag Procedure

	Tutorial 4

	Timer Functions
	TimerRunning Function
	TimerSet Procedure
	TimerStart Procedure
	TimerStop Procedure
	TimerTime Function

	System IO Functions
	Using SystemIO Variables with Components
	User System IO Variables
	System IO Manager
	System IO Variable Editor

	System IO Tags
	GetBoolSystemIO Function
	GetIntSystemIO Function
	GetRealSystemIO Function
	GetStringSystemIO Procedure
	SetBoolSystemIO Procedure
	SetIntSystemIO Procedure
	SetRealSystemIO Procedure
	SetStringSystemIO Procedure

	In-Built System IO Variables
	System IOTags
	GetBoolIBSystemIO Function
	GetIntIBSystemIO Function
	GetRealIBSystemIO Function
	GetStringIBSystemIO Procedure
	SetBoolIBSystemIO Procedure
	SetIntIBSystemIO Procedure
	SetRealIBSystemIO Procedure
	SetStringIBSystemIO Procedure
	Controlling HVAC
	Measurement Application
	C-Bus Labels
	Using Power and Energy Data
	Schedules

	System IO Examples
	Tutorial 5

	Special Days
	IsSpecialDayType Function
	SpecialDayType Function

	String Functions
	Append Procedure
	Copy Procedure
	DateToString Procedure
	Format Procedure
	Length Function
	LowerCase Procedure
	Pos Function
	Pos2 Function
	SetLength Procedure
	StringToInt Function
	StringToIntDef Function
	StringToReal Function
	TimeToString Procedure
	DurationToString Procedure
	UpperCase Procedure
	IntToHexString Procedure
	HexStringToInt Function
	StringToUTF8 Procedure
	UTF8ToString Procedure

	Other Functions
	Beep Procedure
	CurrentPage Function
	Execute Procedure
	GetAccessLevel Function
	LevelToPercent Function
	LogMessage Procedure
	ShowPage Procedure
	ShowingPage Function
	Halt Statement
	Restart Statement
	Tutorial 6
	PercentToLevel Function
	ExecuteSpecialFunction Procedure

	C-Bus Unit Functions
	SetLEDState Procedure
	ToggleLEDState Procedure
	IsPAC Function
	IsCTouch Function
	IsCBusUnit Function
	IsWiser Function
	IsMasterUnit Function

	Flow Control
	If Statement
	Once Statement
	When to use if and once
	ConditionStaysTrue Function
	HasChanged Function
	Case Statement
	When to use if and case
	Repeat Statement
	While Statement
	For Statement
	Tutorial 7

	Sub-Programs
	Procedures
	Parameters
	Functions
	Blocks
	Scope
	Recursion
	Forward Declarations
	Tutorial 8

	Modules
	Module Tags
	Module Groups
	Initialisation
	Delay Procedure
	EnableModule Procedure
	ExitModule Procedure
	DisableModule Procedure
	ModuleDisabled Function
	ModuleEnabled Function
	ModuleWaiting Function
	WaitUntil Procedure
	Tutorial 9

	Graphics
	Coordinates
	Colours
	ClearScreen Procedure
	DrawImage Procedure
	DrawText Procedure
	DrawTextBlock Procedure
	Ellipse Procedure
	LineTo Procedure
	MoveTo Procedure
	Rectangle Procedure
	RoundRect Procedure
	SetBrushColor Procedure
	SetBrushStyle Procedure
	SetFontColor Procedure
	SetFontName Procedure
	SetFontSize Procedure
	SetFontStyle Procedure
	SetPenColor Procedure
	SetPenStyle Procedure
	SetPenWidth Procedure
	TextHeight Function
	TextPos Procedure
	TextWidth Function
	GetClick Function
	GetClickX Function
	GetClickY Function
	Click Example

	Serial IO
	CloseSerial Procedure
	OpenSerial Procedure
	ReadSerial Procedure
	WriteSerial Procedure
	SetSerialDTR Procedure
	SetSerialRTS Procedure
	Serial IO Examples
	Debugging Serial
	Tutorial 10

	Internet
	TCP/IP
	ClientSocketConnected Function
	ClientSocketError Function
	CloseClientSocket Procedure
	CloseServerSocket Procedure
	OpenClientSocket Procedure
	OpenServerSocket Procedure
	ReadClientSocket Procedure
	ReadServerSocket Procedure
	ServerSocketActive Function
	ServerSocketError Function
	ServerSocketHasClient Function
	WriteClientSocket Procedure
	WriteServerSocket Procedure
	TCP/IP Socket Examples

	UDP
	OpenUDPSocket Procedure
	CloseUDPSocket Procedure
	WriteUDPSocket Procedure
	ReadUDPSocket Procedure
	UDPSocketError Function
	UDPSocketActive Function
	SendWOL Procedure
	UDP Example

	Ping
	SendPing Procedure
	GetPingResult Function
	Ping Example

	DNS
	DNSLookup Procedure
	GetDNSLookupResult Function
	GetDNSLookupIPAddress Procedure
	DNS Example

	HTTP Data
	GetHTTPData Procedure
	ReadHTTPData Procedure
	PostHTTPData Procedure
	ReadHTTPPostData Procedure

	E-Mail
	GetEMailCount Function
	GetEMailBodyLineCount Function
	GetEMailAddress Procedure
	GetEMailSender Procedure
	GetEMailSubject Procedure
	GetEMailBodyLine Procedure
	DeleteEMail Procedure
	SendEMail Procedure

	Network Adaptors
	GetNetworkAdaptorCount Function
	GetIPAddress Procedure

	Page Properties
	GetPageIntegerProp Function
	SetPageIntegerProp Procedure

	Component Properties
	GetCompBooleanProp Function
	GetCompIntegerProp Function
	GetCompRealProp Function
	GetCompStringProp Procedure
	GetCompType Function
	GetPageCompCount Function
	SetCompBooleanProp Procedure
	SetCompCBusProp Procedure
	SetCompIntegerProp Procedure
	SetCompRealProp Procedure
	SetCompStringProp Procedure
	ShowSubPage Procedure
	ShowingSubPage Function

	Profiles
	GetProfile Function
	ProfileIsSet Function
	SetProfile Procedure

	Media Transport Control
	GetTransportControlData Procedure
	TransportControlData Procedure
	TransportControlDataType Function
	TransportControlDataStart Function
	TransportControlDataMLG Function
	TransportControlDataCount Function
	TransportControlDataValid Function
	TransportControlFlag Function

	Complex Data Types
	Enumerated Types
	Sub-Ranges
	Arrays
	Records
	Pointers
	Memory Management
	Sets
	Set Operations
	Set Example

	Tutorial 11

	Files
	AssignFile Procedure
	Reset Procedure
	Rewrite Procedure
	Reading from Files
	AppendFile Procedure
	Writing to Files
	CloseFile Procedure
	EOF Function
	EOLN Function
	FileExists Function
	File Example
	Tutorial 12

	ZigBee Functions
	SetZigbeeEndpointLightingLevel
	SetZigbeeGroupLightingLevel
	SetZigbeeScene
	SetZigbeeEndpointCurtainLevel
	SetZigbeeEndpointCurtainStop
	SetZigbeeGroupCurtainLevel
	SetZigbeeGroupCurtainStop
	GetZigbeeEndpointLightingLevel
	GetZigbeeGroupLightingLevel
	StopZigbeeEndpointLightingRamp
	StopZigbeeGroupLightingRamp

	Debugging Programs
	Error Types
	Debugging Support Features
	Debugging Methods
	Condition Testing
	Tracking What Your Program is Doing
	Intermittent Errors

	Error Messages
	Compilation Errors
	Run Time Errors
	Resolving Compilation Errors

	FAQ
	When to use logic
	Using Counters
	Program Execution
	Random Event Times
	Logic Engine Security
	Handling Triggers
	Logic Catch-up
	Handling Sets of Loads
	Controlling Modules from Components or Schedules
	Running Modules Infrequently
	Simplifying Logic Conditions
	Efficient Code
	Fixing Errors
	Tracking a Group Address
	Logic Templates
	How Much Logic Is Possible
	Function indices start from 0, not 1
	Displaying logic data

	Appendix
	Hexadecimal Numbers
	Binary Numbers
	Character and String Formats
	ASCII
	Unicode
	UTF-8
	UTF-16
	UTF-8 Example

	Ladder Logic
	Flow Charts
	Functional Blocks
	Pascal
	Syntax Diagrams

	Tutorial Answers

